Search results

1 – 10 of 81
Article
Publication date: 2 June 2023

Dhabaleswar Mohapatra and Snehashish Chakraverty

Investigation of the smoking model is important as it has a direct effect on human health. This paper focuses on the numerical analysis of the fractional order giving up smoking…

Abstract

Purpose

Investigation of the smoking model is important as it has a direct effect on human health. This paper focuses on the numerical analysis of the fractional order giving up smoking model. Nonetheless, due to observational or experimental errors, or any other circumstance, it may contain some incomplete information. Fuzzy sets can be used to deal with uncertainty. Yet, there may be some inconsistency in the membership as well. As a result, the primary goal of this proposed work is to numerically solve the model in a type-2 fuzzy environment.

Design/methodology/approach

Triangular perfect quasi type-2 fuzzy numbers (TPQT2FNs) are used to deal with the uncertainty in the model. In this work, concepts of r2-cut at r1-plane are used to model the problem's uncertain parameter. The Legendre wavelet method (LWM) is then utilised to solve the giving up smoking model in a type-2 fuzzy environment.

Findings

LWM has been effectively employed in conjunction with the r2-cut at r1-plane notion of type-2 fuzzy sets to solve the model. The LWM has the advantage of converting the non-linear fractional order model into a set of non-linear algebraic equations. LWM scheme solutions are found to be well agreed with RK4 scheme solutions. The existence and uniqueness of the model's solution have also been demonstrated.

Originality/value

To deal with the uncertainty, type-2 fuzzy numbers are used. The use of LWM in a type-2 fuzzy uncertain environment to achieve the model's required solutions is quite fascinating, and this is the key focus of this work.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 May 2017

Syed Tauseef Mohyud-din, Muhammad Asad Iqbal, Umar Khan and Xiao-Jun Yang

This paper aims to propose a method by merging Legendre wavelets method and quasilinearization technique to tackle with the nonlinearity and to get better and more accurate…

120

Abstract

Purpose

This paper aims to propose a method by merging Legendre wavelets method and quasilinearization technique to tackle with the nonlinearity and to get better and more accurate results.

Design/methodology/approach

To test the significance of the proposed scheme, the authors applied the method on the model representing magneto-hydrodynamic squeezing flow of a viscous fluid between two parallel infinite disks, where one disk is impermeable and the other is porous with either suction or injection of the fluid. For the sake of comparison, numerical solution by using RK-4 is also computed. From the graphs and tables, it is evident that the proposed method shows an excellent accordance with the numerical solution.

Findings

The solution converges to the numerical solution when the degree of Legendre polynomials m is increased. For m = 20 in all the three cases, for different values of S, M and A, the graphs of solutions obtained by Legendre wavelet quasilinearization technique show an excellent agreement with numerical solution. Also, it is evident from figures that suction and injection affects the velocity profile in opposite way. For suction, maximum velocity is seen to be at the center of the channel. Magnetic field can be used to regularize the flow and it stabilizes the flow behavior.

Originality/value

Magnetic field can be used to regularize the flow and it stabilizes the flow behavior.

Details

Engineering Computations, vol. 34 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 July 2019

S. Saha Ray and S. Behera

A novel technique based on Bernoulli wavelets has been proposed to solve two-dimensional Fredholm integral equation of second kind. Bernoulli wavelets have been created by…

Abstract

Purpose

A novel technique based on Bernoulli wavelets has been proposed to solve two-dimensional Fredholm integral equation of second kind. Bernoulli wavelets have been created by dilation and translation of Bernoulli polynomials. This paper aims to introduce properties of Bernoulli wavelets and Bernoulli polynomials.

Design/methodology/approach

To solve the two-dimensional Fredholm integral equation of second kind, the proposed method has been used to transform the integral equation into a system of algebraic equations.

Findings

Numerical experiments shows that the proposed two-dimensional wavelets technique can give high-accurate solutions and good convergence rate.

Originality/value

The efficiency of newly developed two-dimensional wavelets technique has been validated by different illustrative numerical examples to solve two-dimensional Fredholm integral equations.

Article
Publication date: 1 December 2003

K. Maleknejad, M. Tavassoli Kajani and Y. Mahmoudi

Uses the continuous Legendre wavelets on the interval [0,1) in the manner of M. Razzaghi and S. Yousefi, to solve the linear second kind integral equations. We use quadrature…

Abstract

Uses the continuous Legendre wavelets on the interval [0,1) in the manner of M. Razzaghi and S. Yousefi, to solve the linear second kind integral equations. We use quadrature formula for the calculation of inner products of any functions, which are required in the approximation for the integral equations. Then, we reduced the integral equation to the solution of linear algebraic equations.

Details

Kybernetes, vol. 32 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 2 January 2023

Parvinder Kaur and Surjan Singh

In this paper, temperature distribution and fin efficiency in a moving porous fin have been discussed. The heat transfer equation is formulated by using Darcy's model. Heat…

Abstract

Purpose

In this paper, temperature distribution and fin efficiency in a moving porous fin have been discussed. The heat transfer equation is formulated by using Darcy's model. Heat transfer coefficient and thermal conductivity vary with temperature. The surface emissivity of the fin varies with temperature as well as with wavelength. Thermal conductivity is taken as a linear and quadratic form of temperature. The entire analysis of the paper is presented in non-dimensional form.

Design/methodology/approach

In this study, a new mathematical model is investigated. The novelty of this model is surface emissivity which is considered temperature and wavelength dependent. Another interesting point is the addition of porous material. The Legendre wavelet collocation method has been used to solve the nonlinear heat transfer equation. Numerical simulations are carried out in MATLAB software.

Findings

An attempt has been made to discuss temperature distribution in the presence of porosity and wavelength-temperature-dependent surface emissivity. The effect of various parameters on temperature has been discussed, including thermal conductivity, emissivity, convection-radiation, Peclet number, sink temperature, exponent “n” and porosity. Fin efficiency is also calculated for some parameters. According to the study, heat transfer rate increases with higher radiation-convection, emissivity, wavelength and porosity parameters.

Originality/value

The numerical results are carried out by using the Legendre wavelet collocation method, which has been compared with exact results in a particular case and found to be in good agreement. The percent error is calculated to find the error between the current method and the exact result. A comparison of the obtained results with the previous data is presented to validate the numerical results.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 August 2020

Amjid Ali, Teruya Minamoto, Umer Saeed and Mujeeb Ur Rehman

The purpose of this paper is to obtain a numerical scheme for finding numerical solutions of linear and nonlinear fractional differential equations involving ψ-Caputo derivative.

Abstract

Purpose

The purpose of this paper is to obtain a numerical scheme for finding numerical solutions of linear and nonlinear fractional differential equations involving ψ-Caputo derivative.

Design/methodology/approach

An operational matrix to find numerical approximation of ψ-fractional differential equations (FDEs) is derived. This study extends the method to nonlinear FDEs by using quasi linearization technique to linearize the nonlinear problems.

Findings

The error analysis of the proposed method is discussed in-depth. Accuracy and efficiency of the method are verified through numerical examples.

Research limitations/implications

The method is simple and a good mathematical tool for finding solutions of nonlinear ψ-FDEs. The operational matrix approach offers less computational complexity.

Originality/value

Engineers and applied scientists may use the present method for solving fractional models appearing in applications.

Article
Publication date: 27 September 2021

Arzu Turan Dincel and Sadiye Nergis Tural Polat

Multi-term variable-order fractional differential equations (VO-FDEs) are powerful tools in accurate modeling of transient-regime real-life problems such as diffusion phenomena…

Abstract

Purpose

Multi-term variable-order fractional differential equations (VO-FDEs) are powerful tools in accurate modeling of transient-regime real-life problems such as diffusion phenomena and nonlinear viscoelasticity. In this paper the Chebyshev polynomials of the fourth kind is employed to obtain a numerical solution for those multi-term VO-FDEs.

Design/methodology/approach

To this end, operational matrices for the approximation of the VO-FDEs are obtained using the Fourth kind Chebyshev Wavelets (FKCW). Thus, the VO-FDE is condensed into an algebraic equation system. The solution of the system of those equations yields a coefficient vector, the coefficient vector in turn yields the approximate solution.

Findings

Several examples that we present at the end of the paper emphasize the efficacy and preciseness of the proposed method.

Originality/value

The value of the paper stems from the exploitation of FKCWs for the numerical solution of multi-term VO-FDEs. The method produces accurate results even for relatively small collocation points. What is more, FKCW method provides a compact mapping between multi-term VO-FDEs and a system of algebraic equations given in vector-matrix form.

Article
Publication date: 30 June 2021

Umer Saeed

The purpose of the present work is to propose a wavelet method for the numerical solutions of Caputo–Hadamard fractional differential equations on any arbitrary interval.

Abstract

Purpose

The purpose of the present work is to propose a wavelet method for the numerical solutions of Caputo–Hadamard fractional differential equations on any arbitrary interval.

Design/methodology/approach

The author has modified the CAS wavelets (mCAS) and utilized it for the solution of Caputo–Hadamard fractional linear/nonlinear initial and boundary value problems. The author has derived and constructed the new operational matrices for the mCAS wavelets. Furthermore, The author has also proposed a method which is the combination of mCAS wavelets and quasilinearization technique for the solution of nonlinear Caputo–Hadamard fractional differential equations.

Findings

The author has proved the orthonormality of the mCAS wavelets. The author has constructed the mCAS wavelets matrix, mCAS wavelets operational matrix of Hadamard fractional integration of arbitrary order and mCAS wavelets operational matrix of Hadamard fractional integration for Caputo–Hadamard fractional boundary value problems. These operational matrices are used to make the calculations fast. Furthermore, the author works out on the error analysis for the method. The author presented the procedure of implementation for both Caputo–Hadamard fractional initial and boundary value problems. Numerical simulation is provided to illustrate the reliability and accuracy of the method.

Originality/value

Many scientist, physician and engineers can take the benefit of the presented method for the simulation of their linear/nonlinear Caputo–Hadamard fractional differential models. To the best of the author’s knowledge, the present work has never been proposed and implemented for linear/nonlinear Caputo–Hadamard fractional differential equations.

Article
Publication date: 19 December 2018

Farshid Mirzaee and Nasrin Samadyar

The purpose of this paper is to develop a new method based on operational matrices of Bernoulli wavelet for solving linear stochastic Itô-Volterra integral equations, numerically.

Abstract

Purpose

The purpose of this paper is to develop a new method based on operational matrices of Bernoulli wavelet for solving linear stochastic Itô-Volterra integral equations, numerically.

Design/methodology/approach

For this aim, Bernoulli polynomials and Bernoulli wavelet are introduced, and their properties are expressed. Then, the operational matrix and the stochastic operational matrix of integration based on Bernoulli wavelet are calculated for the first time.

Findings

By applying these matrices, the main problem would be transformed into a linear system of algebraic equations which can be solved by using a suitable numerical method. Also, a few results related to error estimate and convergence analysis of the proposed scheme are investigated.

Originality/value

Two numerical examples are included to demonstrate the accuracy and efficiency of the proposed method. All of the numerical calculation is performed on a personal computer by running some codes written in MATLAB software.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 January 2020

Muhammad Ismail, Mujeeb ur Rehman and Umer Saeed

The purpose of this study is to obtain the numerical scheme of finding the numerical solutions of arbitrary order partial differential equations subject to the initial and…

Abstract

Purpose

The purpose of this study is to obtain the numerical scheme of finding the numerical solutions of arbitrary order partial differential equations subject to the initial and boundary conditions.

Design/methodology/approach

The authors present a novel Green-Haar approach for the family of fractional partial differential equations. The method comprises a combination of Haar wavelet method with the Green function. To handle the nonlinear fractional partial differential equations the authors use Picard technique along with Green-Haar method.

Findings

The results for some numerical examples are documented in tabular and graphical form to elaborate on the efficiency and precision of the suggested method. The obtained results by proposed method are compared with the Haar wavelet method. The method is better than the conventional Haar wavelet method, for the tested problems, in terms of accuracy. Moreover, for the convergence of the proposed technique, inequality is derived in the context of error analysis.

Practical implications

The authors present numerical solutions for nonlinear Burger’s partial differential equations and two-term partial differential equations.

Originality/value

Engineers and applied scientists may use the present method for solving fractional models appearing in applications.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 81