Search results

1 – 10 of 27
Article
Publication date: 9 July 2021

Kirubakaran V. and Naren Shankar R.

This paper aims to predict the effect of combustor inlet area ratio (CIAR) on the lean blowout limit (LBO) of a swirl stabilized can-type micro gas turbine combustor having a…

120

Abstract

Purpose

This paper aims to predict the effect of combustor inlet area ratio (CIAR) on the lean blowout limit (LBO) of a swirl stabilized can-type micro gas turbine combustor having a thermal capacity of 3 kW.

Design/methodology/approach

The blowout limits of the combustor were predicted predominantly from numerical simulations by using the average exit gas temperature (AEGT) method. In this method, the blowout limit is determined from characteristics of the average exit gas temperature of the combustion products for varying equivalence. The CIAR value considered in this study ranges from 0.2 to 0.4 and combustor inlet velocities range from 1.70 to 6.80 m/s.

Findings

The LBO equivalence ratio decreases gradually with an increase in inlet velocity. On the other hand, the LBO equivalence ratio decreases significantly especially at low inlet velocities with a decrease in CIAR. These results were backed by experimental results for a case of CIAR equal to 0.2.

Practical implications

Gas turbine combustors are vulnerable to operate on lean equivalence ratios at cruise flight to avoid high thermal stresses. A flame blowout is the main issue faced in lean operations. Based on literature and studies, the combustor lean blowout performance significantly depends on the primary zone mass flow rate. By incorporating variable area snout in the combustor will alter the primary zone mass flow rates by which the combustor will experience extended lean blowout limit characteristics.

Originality/value

This is a first effort to predict the lean blowout performance on the variation of combustor inlet area ratio on gas turbine combustor. This would help to extend the flame stability region for the gas turbine combustor.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 April 2021

Kirubakaran V. and David Bhatt

The lean blowout (LBO) limit of the combustor is one of the important performance parameters for any gas turbine combustor design. This study aims to predict the LBO limits of an…

Abstract

Purpose

The lean blowout (LBO) limit of the combustor is one of the important performance parameters for any gas turbine combustor design. This study aims to predict the LBO limits of an in-house designed swirl stabilized 3kW can-type micro gas turbine combustor.

Design/methodology/approach

The experimental prediction of LBO limits was performed on 3kW swirl stabilized combustor fueled with methane for the combustor inlet velocity ranging from 1.70 m/s to 6.80 m/s. The numerical prediction of LBO limits of combustor was performed on two-dimensional axisymmetric model. The blowout limits of combustor were predicted through calculated average exit gas temperature (AEGT) method and compared with experimental predictions.

Findings

The results show that the predicted LBO equivalence ratio decreases gradually with an increase in combustor inlet velocity.

Practical implications

This LBO limits predictions will use to fix the operating boundary conditions of 3kW can-type micro gas turbine combustor. This methodology will be used in design stage as well as in the testing stage of the combustor.

Originality/value

This is a first effort to predict the LBO limits on micro gas turbine combustor through AEGT method. The maximum uncertainty in LBO limit prediction with AEGT is 6 % in comparison with experimental results.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 October 2022

Subramanian Surya Narayanan and Parammasivam K.M.

The purpose of this paper is to comprehensively evaluate the progress in the development of trapped vortex combustors (TVCs) in the past three decades. The review aims to identify…

Abstract

Purpose

The purpose of this paper is to comprehensively evaluate the progress in the development of trapped vortex combustors (TVCs) in the past three decades. The review aims to identify the needs, predict the scope and discuss the challenges of numerical simulations in TVCs applied to gas turbines.

Design/methodology/approach

TVC is an emerging combustion technology for achieving low emissions in gas turbine combustors. The overall operation of such TVCs can be on very lean mixture ratio and hence it helps in achieving high combustion efficiency and low overall emission levels. This review introduces the TVC concept and the evolution of this technology in the past three decades. Various geometries that were explored in TVC research are listed and their operating principles are explained. The review then categorically arranges the progress in computational studies applied to TVCs.

Findings

Analyzing extensive literature on TVCs the review discusses results of numerical simulations of various TVC geometries. Numerical simulations that were used to optimize TVC geometry and to enhance mixing are discussed. Reactive flow studies to comprehend flame stability and emission characteristics are then listed for different TVC geometries.

Originality/value

To the best of the authors’ knowledge, this review is the first of its kind to discuss extensively the computational progress in TVC development specific to gas turbine engines. Earlier review on TVC covers a wide variety of applications including land-based gas turbines, supersonic Ramjets, incinerators and hence compromise on the depth of analysis given to gas turbine engine applications. This review also comprehensively group the numerical studies based on geometry, flow and operating conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 October 2016

Chaozhi Cai, Leyao Fan and Bingsheng Wu

This paper aims to understand the outlet temperature distribution of the combustor of a high-temperature, high-speed heat-airflow simulation system.

Abstract

Purpose

This paper aims to understand the outlet temperature distribution of the combustor of a high-temperature, high-speed heat-airflow simulation system.

Design/methodology/approach

The paper uses numerical simulation to study the temperature distribution of the combustor of a high-temperature, high-speed heat-airflow simulation system. First, the geometrical model of the combustor and the combustion model of the fuel are established. Then, the combustion of fuel in the combustor is simulated by using FLUENT under various conditions. Finally, the results are obtained.

Findings

The paper found three conclusions: when the actual fuel–gas ratio is equal to the theoretical fuel–gas ratio, the temperature in the combustor of the high-temperature, high-speed heat-airflow simulation system (HTSAS) can reach its highest and the distribution is the most uniform. Although increases in the total temperature of the inlet air can increase the highest temperature in the combustor of the HTSAS, the average temperature of the combustor outlet will decrease. At the same time, it will lead to an uneven temperature distribution of the combustor outlet. When the spray angle of the kerosene droplet is at 30 degrees, the outlet temperature field of the combustor is more uniform.

Originality/value

The paper presents a method to analyze the combustion performance of fuel and the gas temperature distribution in the combustor. The results will lay the foundation for the gas temperature control of a combustor.

Details

World Journal of Engineering, vol. 13 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 March 1991

C. Lea

Exemplary data are given that demonstrate unequivocally the inapplicability of commonly used visual inspection criteria for judging the long‐term service reliability of soldered…

Abstract

Exemplary data are given that demonstrate unequivocally the inapplicability of commonly used visual inspection criteria for judging the long‐term service reliability of soldered joints. The data are obtained from a controlled model system. Plated‐through hole (PTH), wave soldered joints are used in this work, having a controlled degree of voiding, blowholing and solder blowout, covering the full range of normal visual assessment, from perfect to very bad, for this particular type of visible fault. The joint performance is assessed in terms of its joint pull strength, thermal shock, mechanical high frequency fatigue, low cycle thermal fatigue and propensity as a corrosion initiation site. No evidence was found that the visible outgassing faults degraded the solder joint performance. Indeed, in all the fatigue tests, the visually unacceptable solder joints performed significantly better. Furthermore, in a related research project, manual reworking of joints has been found to be demonstrably detrimental to solder joint reliability.

Details

Soldering & Surface Mount Technology, vol. 3 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 29 April 2014

Onur Tuncer and Bertan Kaynaroglu

– The purpose of this paper is to assess the validity of Weller's b-ω flamelet model for practical swirl-stabilized combustion applications.

297

Abstract

Purpose

The purpose of this paper is to assess the validity of Weller's b-ω flamelet model for practical swirl-stabilized combustion applications.

Design/methodology/approach

Swirl-stabilized premixed flame behavior is investigated utilizing an atmospheric combustor test rig. Swirl number of the flow is 0.74 with a cold flow Reynolds number of 19,400 based on the hydraulic diameter at the inlet pipe. Operating condition corresponds to an equivalence ratio of 0.7 at a thermal load of 20.4 kW. Reacting flow was seeded with TiO2 particles, and velocity distribution at the center plane was measured utilizing particle image velocimetry. These results serve as a validation dataset for numerical simulations. An open-source computational fluid dynamics (CFD) code library (OpenFOAM) is used for numerical computations. These unsteady Reynolds averaged Navier Stokes (RANS) computations were performed at the same load condition corresponding to experimental data. Parallel numerical simulations were carried out on 128 processor cores. To resolve turbulence, Menter's k-ω shear stress transport model was utilized; flame behavior, on the other hand, was described by Weller's b-ω flamelet model. A block-structured all-hexahedral mesh was used.

Findings

It is observed that two counter-rotating vortices in the main recirculation zone are responsible for flame stabilization. Weak secondary recirculation zones are also present at the sides above the dump plane. Flame front location was inferred from Mie scattering images. Experimental findings show that the flame anchors both on the tip of the center body and also at the rim of the outlet pipe. Numerical simulations capture the complex interactions between the flame and the turbulent flow. These results qualitatively agree with the flame structure observed experimentally.

Practical implications

Swirl-stabilized combustion systems are used in many practical applications ranging from aeroengines to land-based power generation systems. There are implications regarding the understanding of these combustion systems.

Social implications

Better understanding of combustion systems contributes to better performing turbine engines and reduced emissions with implications for the entire society.

Originality/value

The paper provides experimental insight into the application of a combustion model for a flame configuration of practical interest.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 11 March 2020

Hamidreza Khodayari, Fathollah Ommi and Zoheir Saboohi

The purpose of this paper is to review the applications of the chemical reactor network (CRN) approach for modeling the combustion in gas turbine combustors and classify the CRN…

627

Abstract

Purpose

The purpose of this paper is to review the applications of the chemical reactor network (CRN) approach for modeling the combustion in gas turbine combustors and classify the CRN construction methods that have been frequently used by researchers.

Design/methodology/approach

This paper initiates with introducing the CRN approach as a practical tool for precisely predicting the species concentrations in the combustion process with lower computational costs. The structure of the CRN and its elements as the ideal reactors are reviewed in recent studies. Flow field modeling has been identified as the most important input for constructing the CRNs; thus, the flow field modeling methods have been extensively reviewed in previous studies. Network approach, component modeling approach and computational fluid dynamics (CFD), as the main flow field modeling methods, are investigated with a focus on the CRN applications. Then, the CRN construction approaches are reviewed and categorized based on extracting the flow field required data. Finally, the most used kinetics and CRN solvers are reviewed and reported in this paper.

Findings

It is concluded that the CRN approach can be a useful tool in the entire process of combustion chamber design. One-dimensional and quasi-dimensional methods of flow field modeling are used in the construction of the simple CRNs without detailed geometry data. This approach requires fewer requirements and is used in the initial combustor designing process. In recent years, using the CFD approach in the construction of CRNs has been increased. The flow field results of the CFD codes processed to create the homogeneous regions based on construction criteria. Over the past years, several practical algorithms have been proposed to automatically extract reactor networks from CFD results. These algorithms have been developed to identify homogeneous regions with a high resolution based on the splitting criteria.

Originality/value

This paper reviews the various flow modeling methods used in the construction of the CRNs, along with an overview of the studies carried out in this field. Also, the usual approaches for creating a CRN and the most significant achievements in this field are addressed in detail.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 November 2018

Raja Marudhappan, Chandrasekhar Udayagiri and Koni Hemachandra Reddy

The purpose of this paper is to formulate a structured approach to design an annular diffusion flame combustion chamber for use in the development of a 1,400 kW range aero turbo…

Abstract

Purpose

The purpose of this paper is to formulate a structured approach to design an annular diffusion flame combustion chamber for use in the development of a 1,400 kW range aero turbo shaft engine. The purpose is extended to perform numerical combustion modeling by solving transient Favre Averaged Navier Stokes equations using realizable two equation k-e turbulence model and Discrete Ordinate radiation model. The presumed shape β-Probability Density Function (β-PDF) is used for turbulence chemistry interaction. The experiments are conducted on the real engine to validate the combustion chamber performance.

Design/methodology/approach

The combustor geometry is designed using the reference area method and semi-empirical correlations. The three dimensional combustor model is made using a commercial software. The numerical modeling of the combustion process is performed by following Eulerian approach. The functional testing of combustor was conducted to evaluate the performance.

Findings

The results obtained by the numerical modeling provide a detailed understanding of the combustor internal flow dynamics. The transient flame structures and streamline plots are presented. The velocity profiles obtained at different locations along the combustor by numerical modeling mostly go in-line with the previously published research works. The combustor exit temperature obtained by numerical modeling and experiment are found to be within the acceptable limit. These results form the basis of understanding the design procedure and opens-up avenues for further developments.

Research limitations/implications

Internal flow and combustion dynamics obtained from numerical simulation are not experimented owing to non-availability of adequate research facilities.

Practical implications

This study contributes toward the understanding of basic procedures and firsthand experience in the design aspects of combustors for aero-engine applications. This work also highlights one of the efficient, faster and economical aero gas turbine annular diffusion flame combustion chamber design and development.

Originality/value

The main novelty in this work is the incorporation of scoops in the dilution zone of the numerical model of combustion chamber to augment the effectiveness of cooling of combustion products to obtain the desired combustor exit temperature. The use of polyhedral cells for computational domain discretization in combustion modeling for aero engine application helps in achieving faster convergence and reliable predictions. The methodology and procedures presented in this work provide a basic understanding of the design aspects to the beginners working in the gas turbine combustors particularly meant for turbo shaft engines applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 February 2022

Craig Langston

Innovation during project delivery is contested space. The aim in this research is to empirically explore the theory of this contested space and how project implementation can be…

Abstract

Purpose

Innovation during project delivery is contested space. The aim in this research is to empirically explore the theory of this contested space and how project implementation can be optimized by the contractor to deliver better outcomes. It is hypothesized that project innovation has a proportional and measurable relationship to contractor success.

Design/methodology/approach

Based on a novel conceptual framework, this research applies a case study methodology to analyse 31 construction projects undertaken by a single Australian middle-tier contractor. Benefits from innovation are not often equitably shared. There are risks and rewards. The project innovation zone is defined as a combination of three key performance indicators – efficacy, efficiency and margin – merged into a single index that most likely shows evidence of “working smarter”.

Findings

Client–contractor project innovation (c2pi) is demonstrated to be strongly correlated with head contractor success (HCS), yielding an r2 value of 71%. Innovative projects mostly show positive change in efficacy, efficiency and margin when comparing “planned” and “actual” outcomes. Across the cases studied, 35% demonstrated likely evidence of innovative delivery and 52% demonstrated evidence of success from the construction contractor's perspective.

Originality/value

These findings verify that, within the studied sample, the pursuit of innovation leads to projects that are likely to also have greater success for the head contractor, evidenced by the mix of five critical success factors: finishing on schedule, making profit, and having less defects, less accidents and higher quality workmanship. These outcomes arguably also apply to sub-contractors, where the head contractor assumes the role of “client”.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 6
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 June 2000

George K. Chako

Briefly reviews previous literature by the author before presenting an original 12 step system integration protocol designed to ensure the success of companies or countries in…

7257

Abstract

Briefly reviews previous literature by the author before presenting an original 12 step system integration protocol designed to ensure the success of companies or countries in their efforts to develop and market new products. Looks at the issues from different strategic levels such as corporate, international, military and economic. Presents 31 case studies, including the success of Japan in microchips to the failure of Xerox to sell its invention of the Alto personal computer 3 years before Apple: from the success in DNA and Superconductor research to the success of Sunbeam in inventing and marketing food processors: and from the daring invention and production of atomic energy for survival to the successes of sewing machine inventor Howe in co‐operating on patents to compete in markets. Includes 306 questions and answers in order to qualify concepts introduced.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 12 no. 2/3
Type: Research Article
ISSN: 1355-5855

Keywords

1 – 10 of 27