Search results

11 – 20 of 63
Article
Publication date: 9 March 2010

Euripidis Mistakidis

The purpose of this paper is to provide the research and practising engineers with insight on the benefits of using low‐yield point steel with respect to ordinary steel as a…

Abstract

Purpose

The purpose of this paper is to provide the research and practising engineers with insight on the benefits of using low‐yield point steel with respect to ordinary steel as a construction material for shear wall panels. The paper seeks to focus on the behaviour of such panels when installed in new or existing structures in order to improve their seismic performance.

Design/methodology/approach

Finite element models are applied in order to approximate the structural response of low‐yield steel panels, used for seismic applications. Owing to the specific characteristics of the problem at hand, geometric and material nonlinearities have to be accurately considered. For comparison reasons, low‐yield point steel and ordinary steel are considered as construction materials for the aforementioned panels. The paper examines both the case of “pure shear” steel panel and also the more realistic case that the panel is encased in the surrounding frame.

Findings

The paper reaches a number of interesting conclusions. The beneficial behaviour of low‐yield steel panels with respect to ordinary steel panels is verified. Comments are made distinguishing the differences in the behaviour of panels surrounded by strong elements (“encased” panels) compared with that of panels submitted to pure shear. Finally, the improved seismic behaviour of existing structures retrofitted by shear wall panels is verified.

Originality/value

The paper exhibits numerically the advantages of low‐yield point steel with respect to ordinary steel as a construction material for panels and, second, contributes to the comprehension of the realistic panel behaviour of encased panels. More specifically, the paper focuses on the differences in the behaviour of encased steel panels with respect to the “pure shear” steel panels.

Details

Engineering Computations, vol. 27 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 May 2023

Kei Kimura, Takeshi Onogi, Naoya Yotsumoto and Fuminobu Ozaki

In this study, the effects of strain rate on the bending strength of full-scale wide-flange steel beams have been examined at elevated temperatures. Both full-scale loaded heating…

43

Abstract

Purpose

In this study, the effects of strain rate on the bending strength of full-scale wide-flange steel beams have been examined at elevated temperatures. Both full-scale loaded heating tests under steady-state conditions and in-plane numerical analysis using a beam element have been employed.

Design/methodology/approach

The load–deformation relationships in 385 N/mm2-class steel beam specimens was examined using steady-state tests at two loading rate values (0.05 and 1.00 kN/s) and at two constant member temperatures (600 and 700 °C). Furthermore, the stress–strain relationships considering the strain rate effects were proposed based on tensile coupon test results under various strain rate values. The in-plane elastoplastic numerical analysis was conducted considering the strain rate effect.

Findings

The experimental test results of the full-scale steel beam specimens confirmed that the bending strength increased with increase in strain rate. In addition, the analytical results agreed relatively well with the test results, and both strain and strain rate behaviours of a heated steel member, which were difficult to evaluate from the test results, could be quantified numerically.

Originality/value

The novelty of this study is the quantification of the strain rate effect on the bending strength of steel beams at elevated temperatures. The results clarify that the load–deformation relationship of steel beams could be evaluated by using in-plane analysis using the tensile coupon test results. The numerical simulation method can increase the accuracy of evaluation of the actual behaviour of steel members in case of fire.

Article
Publication date: 27 July 2017

Simon Mwangi

This paper aims to present the findings of a numerical investigation into the performance of the steel-concrete composite floor involved in Broadgate Phase 8 fire.

Abstract

Purpose

This paper aims to present the findings of a numerical investigation into the performance of the steel-concrete composite floor involved in Broadgate Phase 8 fire.

Design/methodology/approach

The investigation is conducted by carrying out a 3-D thermomechanical analysis of a composite floor similar to the one involved in the fire using ANSYS. Four fire scenarios are investigated, with each producing a unique stress – strain pattern. The results obtained are compared with the observations made after the fire and inferences drawn.

Findings

The results obtained are found to be correlated with the observations made after the fire. The performance of the composite floor is found to be dominated by development of large strains, leading to large deflections. Furthermore, colder parts of the structure, through redistribution of forces, are found to have a profound impact on the ability of a composite floor to resist heating effects. From the findings, it is concluded that connections’ design, occurrence of membrane action and thermal restraints were the key reasons the floor did not fail.

Originality value

The study takes a more forensic approach. This is a departure from majority of published literature, where comparison is usually between experimental and numerical results. By comparing the findings from a real fire with those of a numerical investigation, the study provides an insight into the accuracy of applying numerical models for the prediction of effects of fire on structural behaviour.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 April 2022

Fuminobu Ozaki and Takumi Umemura

In this study, engineering stress-strain relationships considering an effect of strain rate on steel materials at elevated temperatures were formulated and a simplified analytical…

Abstract

Purpose

In this study, engineering stress-strain relationships considering an effect of strain rate on steel materials at elevated temperatures were formulated and a simplified analytical model using a two-dimensional beam element to analytically examine the effect of strain rate on the load-bearing capacity and collapse temperature was proposed.

Design/methodology/approach

The stress-strain relationships taking into account temperature, strain, and strain rate were established based on the past coupon test results with strain rate as the test parameter. Furthermore, an elasto-plastic analysis using a two-dimensional beam element, which considered the effect on strain rate, was conducted for both transient- and steady-state conditions.

Findings

The analytical results agreed relatively well with the test results, which used small steel beam specimens with a rectangular cross-section under various heating rates (transient-state condition) and deformation rates (steady-state condition). It was found that the bending strength and collapse temperature obtained from the parametric analyses agreed relatively well with those evaluated using the effective strength obtained from the coupon tests with strain equal to 0.01 or 0.02 under the fast strain rates.

Originality/value

The effect of stress degradation, including the stress-strain relationships at elevated temperature, was mitigated by considering the effect of strain rate on the analytical model. This is an important point to consider when considering the effect of strain rate on steel structural analysis at elevated temperatures to maintain analytical stability unaccompanied by the stress degradation.

Article
Publication date: 14 March 2019

Mohammad Zaman Kabir and Mehdi Parvizi

The purpose of this paper is to focus on the influences of residual stresses which were induced during roll-forming sections on lateral-torsional buckling of thin-walled…

Abstract

Purpose

The purpose of this paper is to focus on the influences of residual stresses which were induced during roll-forming sections on lateral-torsional buckling of thin-walled cold-formed steel channel and built-up I-sections beams. Built-up I section is made up of two back-to-back cold-formed channel beams. In this direction, at the primary stage, the roll-forming process of a channel section was simulated in ABAQUS environment and the accuracy of the result was verified with those existing experiments. Residual stresses and strains in both longitudinal and circumferential transverse directions were extracted and considered in the lateral-torsional buckling analysis under uniform end moments. The contribution of the current research is devoted to the numerical simulation of the rolling process in ABAQUS software enabling to restore the remaining stresses and strains for the buckling analysis in the identical software. The results showed that the residual stresses decrease considerably the lateral-torsional buckling strength as they have a major impact on short-span beams for channel sections and larger span for built-up I sections. The obtained moment capacity from the buckling analysis was compared to the predictions by American Iron and Steel Institute design code and it is found to be conservative.

Design/methodology/approach

This paper has explained a numerical study on the roll-forming process of a channel section and member moment capacities related to the lateral-torsional buckling of the rolled form channel and built-up I-sections beams under uniform bending about its major axis. It has also investigated the effects of residual stresses and strains on the behaviour of this buckling mode.

Findings

The residuals decrease the moment capacities of the channel beams and have major effect on shorter spans and also increase the local buckling strength of compression flange. But the residuals have major effect on larger spans for built-up I sections. It could be seen that the ratio of moment (with residuals and without residuals) for singly symmetric sections is more pronounced than doubly symmetric sections. So it is recommended to use doubly symmetric section of cold-formed section beams.

Originality/value

The incorporation of residual stresses and strains in the process of numerical simulation of rolled forming of cold-formed steel sections under end moments is the main contribution of the current work. The effect of residual stresses and strains on the lateral-torsional buckling is, for the first time, addressed in the paper.

Details

International Journal of Structural Integrity, vol. 10 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 August 2002

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from…

2511

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The bibliography at the end of the paper contains more than 1330 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1999–2002.

Details

Engineering Computations, vol. 19 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 December 2016

Flávio Arrais, Nuno Lopes and Paulo Vila Real

Steel beams composed of cold-formed sections are common in buildings because of their lightness and ability to support large spans. However, the instability phenomena associated…

Abstract

Purpose

Steel beams composed of cold-formed sections are common in buildings because of their lightness and ability to support large spans. However, the instability phenomena associated to these members are not completely understood in fire situation. Thus, the purpose of this study is to analyse the behaviour of beams composed of cold-formed lipped channel sections at elevated temperatures.

Design/methodology/approach

A numerical analysis is made, applying the finite element program SAFIR, on the behaviour of simply supported cold formed steel beams at elevated temperatures. A parametric study, considering several cross-sections with different slenderness’s values, steel grades and bending diagrams, is presented. The obtained numerical results are compared with the design bending resistances determined from Eurocode 3 Part 1-2 and its French National Annex (FN Annex).

Findings

The current design expressions revealed to be too conservative when compared with the obtained numerical results. It was possible to observe that the FN Annex is less conservative than the Annex E, the first having a better agreement with the numerical results.

Originality/value

Following the previous comparisons, new fire design formulae are tested. This new methodology, which introduces minimum changes in the existing formulae, provides safety and accuracy at the same time when compared to the numerical results, considering the occurrence of local, distortional and lateral torsional buckling phenomena in these members at elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. 7 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 10 July 2023

Fatimah De’nan, Chong Shek Wai and Nor Salwani Hashim

Various designs of corrugated webs include trapezoidal, sinusoidal, triangular and rectangular profiles. The increasing use of curved plates has prompted the creation of…

Abstract

Purpose

Various designs of corrugated webs include trapezoidal, sinusoidal, triangular and rectangular profiles. The increasing use of curved plates has prompted the creation of I-sections made of steel with a corrugated web design. This study aims to examine the effectiveness of an I-beam steel section that features a perforated-triangular web profile.

Design/methodology/approach

In the current study, finite element analysis was conducted on corrugated-perforated steel I-sections using ANSYS software. The study focused on inspecting the design of the perforations, including their shape (circle, square, hexagon, diamond and octagon), size of perforations (80 mm, 100 mm and 120 mm) and layout (the position of web perforation), as well as examining the geometric properties of the section in term of bending, lateral torsional buckling, torsion and shear behavior.

Findings

The study revealed that perforations with diamond, circle and hexagon shapes exhibit good performance, whereas the square shape performs poorly. Moreover, the steel section’s performance decreases with an increase in perforation size, regardless of loading conditions. In addition, the shape of the web perforations can also influence its stress distribution. For example, diamond-shaped perforations have been found to perform better than square-shaped perforations in terms of stress distribution and overall performance. This was because of their ability to distribute stress more evenly and provide greater support to the surrounding material. The diagonal alignment of the diamond shape aligns with principal stress directions, allowing for efficient load transfer and reduced stress concentrations. Additionally, diamond-shaped perforations offer a larger effective area, better shear transfer and improved strain redistribution, resulting in enhanced structural integrity and increased load-carrying capacity.

Originality/value

Hence, the presence of lateral-torsional buckling and torsional loading conditions significantly impacts the performance of corrugated-perforated steel I-sections.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 June 2021

Flávio Arrais, Nuno Lopes and Paulo Vila Real

Sigma cross-section profiles are often chosen for their lightness and ability to support large spans, offering a favourable bending resistance. However, they are more susceptible…

Abstract

Purpose

Sigma cross-section profiles are often chosen for their lightness and ability to support large spans, offering a favourable bending resistance. However, they are more susceptible to local, distortional and lateral-torsional buckling, as possible failure modes when compared to common I-sections and hollow cross-sections. However, the instability phenomena associated to these members are not completely understood in fire situation. Therefore, the purpose of this study is to analyse the behaviour of beams composed of cold-formed sigma sections at elevated temperatures.

Design/methodology/approach

This study presents a numerical analysis, using advanced methods by applying the finite element software SAFIR. A numerical analysis of the behaviour of simply supported cold-formed sigma beams in the case of fire is presented considering different cross-section slenderness values, elevated temperatures, steel grades and bending moment diagrams. Comparisons are made between the obtained numerically ultimate bending capacities and the design bending resistances from Eurocode 3 Part 1–2 rules and its respective French National Annex (FN Annex).

Findings

The current design expressions revealed to be over conservative when compared with the obtained numerical results. It was possible to observe that the FN Annex is less conservative than the general prescriptions, the first having a better agreement with the numerical results.

Originality/value

Following the previous comparisons, new fire design formulae are analysed. This new methodology, which introduces minimum changes in the existing formulae, provides at the same time safety and accuracy when compared to the numerical results, considering the occurrence of local, distortional and lateral-torsional buckling phenomena in these members at elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 10 August 2023

Md Azlin Md Said, Fatimah De’nan, Nor Salwani Hashim, Bong Wely and Chuah Hoi Ching

The purpose of this study is to further investigate the potential benefits brought about by the development of modern technology in the steel construction industry. Specifically…

Abstract

Purpose

The purpose of this study is to further investigate the potential benefits brought about by the development of modern technology in the steel construction industry. Specifically, the study focuses on the optimization of tapered members for pre-engineered steel structures, aligning with Eurocode 3 standards. By emphasizing the effectiveness of material utilization in construction, this research aims to enhance the structural performance and safety of buildings. Moreover, it recognizes the pivotal role played by such advancements in promoting economic growth through the reduction of material waste, optimization of cost-efficiency and support for sustainable construction practices.

Design/methodology/approach

Structural performance at initial analysis and final analysis of the selected critical frame were carried out using Dlubal RSTAB 8.18. The structural frame stability and sway imperfections were checked based on MS EN1993-1-1:2005 (EC3). To assess the structural stability of the portal frame using MS EN 1993-1-1:2005 (EC3), cross-sectional resistance and member buckling resistance were verified based on Clause 6.2.4 – Compression, Clause 6.2.5 – Bending Moment, Clause 6.2.6 – Shear, Clause 6.2.8 – Bending and Shear, Clause 6.2.9 – Bending and Axial Force and Clause 6.3.4 – General Method for Lateral and Lateral Torsional Buckling of Structural Components.

Findings

In this study, the cross sections of the web-tapered rafter and column were classified under Class 4. These involved the consideration of elastic shear resistance and effective area on the critical steel sections. The application of the General Method on the verification of the resistance to lateral and lateral torsional buckling for structural components required the extraction of some parameters using structural analysis software. From the results, there was only 5.90% of mass difference compared with the previous case study.

Originality/value

By classifying the web-tapered cross sections of the rafter and column under Class 4, the study accounts for important factors such as elastic shear resistance and effective area on critical steel sections.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

11 – 20 of 63