Search results

1 – 10 of over 21000
To view the access options for this content please click here
Book part
Publication date: 15 January 2010

Denis Bolduc and Ricardo Alvarez-Daziano

The search for flexible models has led the simple multinomial logit model to evolve into the powerful but computationally very demanding mixed multinomial logit (MMNL…

Abstract

The search for flexible models has led the simple multinomial logit model to evolve into the powerful but computationally very demanding mixed multinomial logit (MMNL) model. That flexibility search lead to discrete choice hybrid choice models (HCMs) formulations that explicitly incorporate psychological factors affecting decision making in order to enhance the behavioral representation of the choice process. It expands on standard choice models by including attitudes, opinions, and perceptions as psychometric latent variables.

In this paper we describe the classical estimation technique for a simulated maximum likelihood (SML) solution of the HCM. To show its feasibility, we apply it to data of stated personal vehicle choices made by Canadian consumers when faced with technological innovations.

We then go beyond classical methods, and estimate the HCM using a hierarchical Bayesian approach that exploits HCM Gibbs sampling considering both a probit and a MMNL discrete choice kernel. We then carry out a Monte Carlo experiment to test how the HCM Gibbs sampler works in practice. To our knowledge, this is the first practical application of HCM Bayesian estimation.

We show that although HCM joint estimation requires the evaluation of complex multi-dimensional integrals, SML can be successfully implemented. The HCM framework not only proves to be capable of introducing latent variables, but also makes it possible to tackle the problem of measurement errors in variables in a very natural way. We also show that working with Bayesian methods has the potential to break down the complexity of classical estimation.

Details

Choice Modelling: The State-of-the-art and The State-of-practice
Type: Book
ISBN: 978-1-84950-773-8

To view the access options for this content please click here
Book part
Publication date: 6 March 2009

Jörg Henseler, Christian M. Ringle and Rudolf R. Sinkovics

In order to determine the status quo of PLS path modeling in international marketing research, we conducted an exhaustive literature review. An evaluation of double-blind…

Abstract

In order to determine the status quo of PLS path modeling in international marketing research, we conducted an exhaustive literature review. An evaluation of double-blind reviewed journals through important academic publishing databases (e.g., ABI/Inform, Elsevier ScienceDirect, Emerald Insight, Google Scholar, PsycINFO, Swetswise) revealed that more than 30 academic articles in the domain of international marketing (in a broad sense) used PLS path modeling as means of statistical analysis. We assessed what the main motivation for the use of PLS was in respect of each article. Moreover, we checked for applications of PLS in combination with one or more additional methods, and whether the main reason for conducting any additional method(s) was mentioned.

Details

New Challenges to International Marketing
Type: Book
ISBN: 978-1-84855-469-6

To view the access options for this content please click here
Book part
Publication date: 1 August 2004

Larry J Williams, Mark B Gavin and Nathan S Hartman

The objective of this chapter is to provide strategy researchers with a general resource for applying structural equation modeling (SEM) in their research. This objective…

Abstract

The objective of this chapter is to provide strategy researchers with a general resource for applying structural equation modeling (SEM) in their research. This objective is important for strategy researchers because of their increased use of SEM, the availability of advanced SEM approaches relevant for their substantive interests, and the fact that important technical work on SEM techniques often appear in outlets that may not be not readily accessible. This chapter begins with a presentation of the basics of SEM techniques, followed by a review of recent applications of SEM in strategic management research. We next provide an overview of five types of advanced applications of structural equation modeling and describe how they can be applied to strategic management topics. In a fourth section we discuss technical developments related to model evaluation, mediation, and data requirements. Finally, a summary of recommendations for strategic management researchers using SEM is also provided.

Details

Research Methodology in Strategy and Management
Type: Book
ISBN: 978-1-84950-235-1

To view the access options for this content please click here
Book part
Publication date: 15 January 2010

Eleni Kitrinou, Amalia Polydoropoulou and Denis Bolduc

This paper introduces a behavioral framework to model residential relocation decision in island areas, at which the decision in question is influenced by the…

Abstract

This paper introduces a behavioral framework to model residential relocation decision in island areas, at which the decision in question is influenced by the characteristics of island regions, policy variables related to accessibility measures, and housing prices at the proposed island area, as well as personal, household (HH), job, and latent characteristics of the decision makers.

The model framework corresponds to an integrated choice and latent variable (ICLV) setting where the discrete choice model includes latent variables that capture attitudes and perceptions of the decision makers. The latent variable model is composed of a group of structural equations describing the latent variables as a function of observable exogenous variables and a group of measurement equations, linking the latent variables to observable indicators.

An empirical study has been developed for the Greek Aegean island area. Data were collected from 900 HHs in Greece contacted via telephone. The HHs were presented hypothetical scenarios involving policy variables, where 2010 was the reference year. ICLV binary logit (BL) and mixed binary logit (MBL) relocation choice models were estimated sequentially. Findings suggest that MBL models are superior to BL models, while both the policy and the latent variables significantly affect the relocation decision and improve considerably the models' goodness of fit. Sample enumeration method is finally used to aggregate the results over the Greek population.

Details

Choice Modelling: The State-of-the-art and The State-of-practice
Type: Book
ISBN: 978-1-84950-773-8

To view the access options for this content please click here
Book part
Publication date: 29 August 2005

Kai S. Cortina, Hans Anand Pant and Joanne Smith-Darden

Over the last decade, latent growth modeling (LGM) utilizing hierarchical linear models or structural equation models has become a widely applied approach in the analysis…

Abstract

Over the last decade, latent growth modeling (LGM) utilizing hierarchical linear models or structural equation models has become a widely applied approach in the analysis of change. By analyzing two or more variables simultaneously, the current method provides a straightforward generalization of this idea. From a theory of change perspective, this chapter demonstrates ways to prescreen the covariance matrix in repeated measurement, which allows for the identification of major trends in the data prior to running the multivariate LGM. A three-step approach is suggested and explained using an empirical study published in the Journal of Applied Psychology.

Details

Multi-Level Issues in Strategy and Methods
Type: Book
ISBN: 978-1-84950-330-3

To view the access options for this content please click here
Article
Publication date: 24 September 2019

Luz-Dary Botero-Pinzón, Jose C. Casillas and Marisol Valencia-Cárdenas

The purpose of this paper is to design a system for measuring the level of internationalisation of companies in the field of developing countries, through latent variables

Abstract

Purpose

The purpose of this paper is to design a system for measuring the level of internationalisation of companies in the field of developing countries, through latent variables based on multiple indicators, external and internal orientation.

Design/methodology/approach

From a sample of 112 international companies in Colombia, the methodology of latent variable analysis (LPA) is applied to a series of complementary tools, such as a model of structural equations, regression models and cluster analysis of companies.

Findings

The paper allows to verify the identification of six latent variables and their relationships, as well as to identify four levels of internationalisation from the structure of latent variables identified.

Originality/value

This is the first application of this recent and sophisticated statistical technique to the field of measuring the level of business internationalisation, especially indicated in the Latin American area, where an increasing number of companies are advancing in their process of international expansion.

Propósito

Diseñar un sistema de medición del nivel de internacionalización de las empresas en el ámbito de los países en vías de desarrollo, mediante variables latentes basadas en múltiples indicadores, de orientación externa e interna.

Diseño/metodología/enfoque

A partir de una muestra de 112 empresas internacionales de Colombia, se aplica la metodología de Análisis de Variables Latentes (LPA) unod a una serie de herramientas complementarias, como un modelo de ecuaciones estructurales, modelos de regresión and análisis cluster de empresas.

Resultados

Que permite verificar la identificación de seis variables latentes and sus relaciones, así como identificar cuatro niveles de internacionalización a partir de la estructura de variables latentes identificadas.

Originalidad/valor

Se trata de la primera aplicación de esta reciente and sofisticada técnica estadística al ámbito de la medición del nivel de internacionalización empresarial, especialmente indicada en el ámbito latinoamericano, donde un creciente número de empresas están avanzando en su proceso de expansión internacional.

To view the access options for this content please click here
Book part
Publication date: 6 September 2021

Rachel S. Rauvola, Cort W. Rudolph and Hannes Zacher

In this chapter, the authors consider the role of time for research in occupational stress and well-being. First, temporal issues in studying occupational health…

Abstract

In this chapter, the authors consider the role of time for research in occupational stress and well-being. First, temporal issues in studying occupational health longitudinally, focusing in particular on the role of time lags and their implications for observed results (e.g., effect detectability), analyses (e.g., handling unequal durations between measurement occasions), and interpretation (e.g., result generalizability, theoretical revision) were discussed. Then, time-based assumptions when modeling lagged effects in occupational health research, providing a focused review of how research has handled (or ignored) these assumptions in the past, and the relative benefits and drawbacks of these approaches were discussed. Finally, recommendations for readers, an accessible tutorial (including example data and code), and discussion of a new structural equation modeling technique, continuous time structural equation modeling, that can “handle” time in longitudinal studies of occupational health were provided.

Details

Examining and Exploring the Shifting Nature of Occupational Stress and Well-Being
Type: Book
ISBN: 978-1-80117-422-0

Keywords

To view the access options for this content please click here
Book part
Publication date: 8 December 2016

Indranarain Ramlall

Abstract

Details

Applied Structural Equation Modelling for Researchers and Practitioners
Type: Book
ISBN: 978-1-78635-882-0

To view the access options for this content please click here
Book part
Publication date: 15 January 2010

Cristian Angelo Guevara and Moshe Ben-Akiva

Endogeneity or nonorthogonality in discrete choice models occurs when the systematic part of the utility is correlated with the error term. Under this misspecification…

Abstract

Endogeneity or nonorthogonality in discrete choice models occurs when the systematic part of the utility is correlated with the error term. Under this misspecification, the model's estimators are inconsistent. When endogeneity occurs at the level of each observation, the principal technique used to treat for it is the control-function method, where a function that accounts for the endogenous part of the error term is constructed and is then included as an additional variable in the choice model. Alternatively, the latent-variable method can also address endogeneity. In this case, the omitted quality attribute is considered as a latent variable and modeled as a function of observed variables and/or measured through indicators. The link between the controlfunction and the latent-variable methods in the correction for endogeneity has not been established in previous work. This paper analyzes the similarities and differences between a set of variations of both methods, establishes the formal link between them in the correction for endogeneity, and illustrates their properties using a Monte Carlo experiment. The paper concludes with suggestions for future lines of research in this area.

Details

Choice Modelling: The State-of-the-art and The State-of-practice
Type: Book
ISBN: 978-1-84950-773-8

To view the access options for this content please click here
Book part
Publication date: 13 August 2012

Mehmet Mehmetoglu

Tourism research contains a large share of consumer behavior-orientated studies using multidimensional constructs (exogenous/endogenous). Accordingly, scholars have mainly…

Abstract

Tourism research contains a large share of consumer behavior-orientated studies using multidimensional constructs (exogenous/endogenous). Accordingly, scholars have mainly made use of a two-step approach that can be referred to as PCA-MLR (principal component analysis and then ordinary least squares multiple linear regression analysis) to examine the relationships among exogenous and endogenous constructs in a statistical model. Although this two-step approach has contributed to the advancement of tourism research, it still suffers from a number of drawbacks which can readily be overcome by a so-called second-generation statistical tool, namely, partial least squares approach to structural equation modeling (PLS-SEM). The current chapter explains and illustrates (with an application to tourism data) the advantages (e.g., several layers of estimations, suiting small sample sizes, robustness to multicollinearity, model-based clustering, etc.) of PLS-SEM both from a statistical and practical point of view. Finally, an elucidation is also provided for suggesting PLS-SEM as an alternative to PCA-MLR instead of COV-SEM (covariance-based structural equation modeling). The chapter concludes by proposing that PLS-SEM is a reliable and flexible statistical approach that is of high value, in particular, for applied research.

Details

Advances in Hospitality and Leisure
Type: Book
ISBN: 978-1-78052-936-3

Keywords

1 – 10 of over 21000