Search results

1 – 10 of 272
Article
Publication date: 25 October 2021

Mandeep Kaur, Rajinder Sandhu and Rajni Mohana

The purpose of this study is to verify that if applications categories are segmented and resources are allocated based on their specific category, how effective scheduling can be…

Abstract

Purpose

The purpose of this study is to verify that if applications categories are segmented and resources are allocated based on their specific category, how effective scheduling can be done?.

Design/methodology/approach

This paper proposes a scheduling framework for IoT application jobs, based upon the Quality of Service (QoS) parameters, which works at coarse grained level to select a fog environment and at fine grained level to select a fog node. Fog environment is chosen considering availability, physical distance, latency and throughput. At fine grained (node selection) level, a probability triad (C, M, G) is anticipated using Naïve Bayes algorithm which provides probability of newly submitted application job to fall in either of the categories Compute (C) intensive, Memory (M) intensive and GPU (G) intensive.

Findings

Experiment results showed that the proposed framework performed better than traditional cloud and fog computing paradigms.

Originality/value

The proposed framework combines types of applications and computation capabilities of Fog computing environment, which is not carried out to the best of knowledge of authors.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 17 May 2023

Ishita Seth, Kalpna Guleria and Surya Narayan Panda

The internet of vehicles (IoV) communication has recently become a popular research topic in the automotive industry. The growth in the automotive sector has resulted in…

28

Abstract

Purpose

The internet of vehicles (IoV) communication has recently become a popular research topic in the automotive industry. The growth in the automotive sector has resulted in significant standards and guidelines that have engaged various researchers and companies. In IoV, routing protocols play a significant role in enhancing communication safety for the transportation system. The high mobility of nodes in IoV and inconsistent network coverage in different areas make routing challenging. This paper aims to provide a lane-based advanced forwarding protocol for internet of vehicles (LAFP-IoV) for efficient data distribution in IoV. The proposed protocol’s main feature is that it can identify the destination zone by using position coordinates and broadcasting the packets toward the direction of destination. The novel suppression technique is used in the broadcast method to reduce the network routing overhead.

Design/methodology/approach

The proposed protocol considers the interferences between different road segments, and a novel lane-based forwarding model is presented. The greedy forwarding notion, the broadcasting mechanism, and the suppression approach are used in this protocol to reduce the overhead generated by standard beacon forwarding procedures. The SUMO tool and NS-2 simulator are used for the vehicle's movement pattern and to simulate LAFP-IoV.

Findings

The simulation results show that the proposed LAFP-IoV protocol performs better than its peer protocols. It uses a greedy method for forwarding data packets and a carry-and-forward strategy to recover from the local maximum stage. This protocol's low latency and good PDR make it ideal for congested networks.

Originality/value

The proposed paper provides a unique lane-based forwarding for IoV. The proposed work achieves a higher delivery ratio than its peer protocols. The proposed protocol considers the lanes while forwarding the data packets applicable to the highly dense scenarios.

Article
Publication date: 28 February 2023

Tulsi Pawan Fowdur, M.A.N. Shaikh Abdoolla and Lokeshwar Doobur

The purpose of this paper is to perform a comparative analysis of the delay associated in running two real-time machine learning-based applications, namely, a video quality…

Abstract

Purpose

The purpose of this paper is to perform a comparative analysis of the delay associated in running two real-time machine learning-based applications, namely, a video quality assessment (VQA) and a phishing detection application by using the edge, fog and cloud computing paradigms.

Design/methodology/approach

The VQA algorithm was developed using Android Studio and run on a mobile phone for the edge paradigm. For the fog paradigm, it was hosted on a Java server and for the cloud paradigm on the IBM and Firebase clouds. The phishing detection algorithm was embedded into a browser extension for the edge paradigm. For the fog paradigm, it was hosted on a Node.js server and for the cloud paradigm on Firebase.

Findings

For the VQA algorithm, the edge paradigm had the highest response time while the cloud paradigm had the lowest, as the algorithm was computationally intensive. For the phishing detection algorithm, the edge paradigm had the lowest response time, and the cloud paradigm had the highest, as the algorithm had a low computational complexity. Since the determining factor for the response time was the latency, the edge paradigm provided the smallest delay as all processing were local.

Research limitations/implications

The main limitation of this work is that the experiments were performed on a small scale due to time and budget constraints.

Originality/value

A detailed analysis with real applications has been provided to show how the complexity of an application can determine the best computing paradigm on which it can be deployed.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 13 September 2021

Manik Chandra and Rajdeep Niyogi

This paper aims to solve the web service selection problem using an efficient meta-heuristic algorithm. The problem of selecting a set of web services from a large-scale service…

Abstract

Purpose

This paper aims to solve the web service selection problem using an efficient meta-heuristic algorithm. The problem of selecting a set of web services from a large-scale service environment (web service repository) while maintaining Quality-of-Service (QoS), is referred to as web service selection (WSS). With the explosive growth of internet services, managing and selecting the proper services (or say web service) has become a pertinent research issue.

Design/methodology/approach

In this paper, to address WSS problem, the authors propose a new modified fruit fly optimization approach, called orthogonal array-based learning in fruit fly optimizer (OL-FOA). In OL-FOA, they adopt a chaotic map to initialize the population; they add the adaptive DE/best/2mutation operator to improve the exploration capability of the fruit fly approach; and finally, to improve the efficiency of the search process (by reducing the search space), the authors use the orthogonal learning mechanism.

Findings

To test the efficiency of the proposed approach, a test suite of 2500 web services is chosen from the public repository. To establish the competitiveness of the proposed approach, it compared against four other meta-heuristic approaches (including classical as well as state-of-the-art), namely, fruit fly optimization (FOA), differential evolution (DE), modified artificial bee colony algorithm (mABC) and global-best ABC (GABC). The empirical results show that the proposed approach outperforms its counterparts in terms of response time, latency, availability and reliability.

Originality/value

In this paper, the authors have developed a population-based novel approach (OL-FOA) for the QoS aware web services selection (WSS). To justify the results, the authors compared against four other meta-heuristic approaches (including classical as well as state-of-the-art), namely, fruit fly optimization (FOA), differential evolution (DE), modified artificial bee colony algorithm (mABC) and global-best ABC (GABC) over the four QoS parameter response time, latency, availability and reliability. The authors found that the approach outperforms overall competitive approaches. To satisfy all objective simultaneously, the authors would like to extend this approach in the frame of multi-objective WSS optimization problem. Further, this is declared that this paper is not submitted to any other journal or under review.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 15 July 2022

Joy Iong-Zong Chen, Ping-Feng Huang and Chung Sheng Pi

Apart from, the smart edge computing (EC) robot (SECR) provides the tools to manage Internet of things (IoT) services in the edge landscape by means of real-world test-bed…

Abstract

Purpose

Apart from, the smart edge computing (EC) robot (SECR) provides the tools to manage Internet of things (IoT) services in the edge landscape by means of real-world test-bed designed in ECR. Eventually, based on the results from two experiments held in little constrained condition, such as the maximum data size is 2GB, the performance of the proposed techniques demonstrate the effectiveness, scalability and performance efficiency of the proposed IoT model.

Design/methodology/approach

Certainly, the proposed SECR is trying primarily to take over other traditional static robots in a centralized or distributed cloud environment. One aspect of representation of the proposed edge computing algorithms is due to challenge to slow down the consumption of time which happened in an artificial intelligence (AI) robot system. Thus, the developed SECR trained by tiny machine learning (TinyML) techniques to develop a decentralized and dynamic software environment.

Findings

Specifically, the waste time of SECR has actually slowed down when it is embedded with Edge Computing devices in the demonstration of data transmission within different paths. The TinyML is applied to train with image data sets for generating a framework running in the SECR for the recognition which has also proved with a second complete experiment.

Originality/value

The work presented in this paper is the first research effort, and which is focusing on resource allocation and dynamic path selection for edge computing. The developed platform using a decoupled resource management model that manages the allocation of micro node resources independent of the service provisioning performed at the cloud and manager nodes. Besides, the algorithm of the edge computing management is established with different path and pass large data to cloud and receive it. In this work which considered the SECR framework is able to perform the same function as that supports to the multi-dimensional scaling (MDS).

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 March 2022

Ibrahim Mashal

Smart grid is an integration between traditional electricity grid and communication systems and networks. Providing reliable services and functions is a critical challenge for the…

Abstract

Purpose

Smart grid is an integration between traditional electricity grid and communication systems and networks. Providing reliable services and functions is a critical challenge for the success and diffusion of smart grids that needs to be addressed. The purpose of this study is to determine the critical criteria that affect smart grid reliability from the perspective of users and investigate the role big data plays in smart grid reliability.

Design/methodology/approach

This study presents a model to investigate and identify criteria that influence smart grid reliability from the perspective of users. The model consists of 12 sub-criteria covering big data management, communication system and system characteristics aspects. Multi-criteria decision-making approach is applied to analyze data and prioritize the criteria using the fuzzy analytic hierarchy process based on the triangular fuzzy numbers. Data was collected from 16 experts in the fields of smart grid and Internet of things.

Findings

The results show that the “Big Data Management” criterion has a significant impact on smart grid reliability followed by the “System Characteristics” criterion. The “Data Analytics” and the “Data Visualization” were ranked as the most influential sub-criteria on smart grid reliability. Moreover, sensitivity analysis has been applied to investigate the stability and robustness of results. The findings of this paper provide useful implications for academicians, engineers, policymakers and many other smart grid stakeholders.

Originality/value

The users are not expected to actively participate in smart grid and its services without understanding their perceptions on smart grid reliability. Very few works have studied smart grid reliability from the perspective of users. This study attempts to fill this considerable gap in literature by proposing a fuzzy model to prioritize smart grid reliability criteria.

Article
Publication date: 25 March 2024

Xiaoxia Zhang, Jin Zhang, Peiyan Du and Guohe Wang

In this paper, the brain potential changes caused by touching fabrics for handle evaluation were recorded by event related potential (ERP) method, compared with subjective…

Abstract

Purpose

In this paper, the brain potential changes caused by touching fabrics for handle evaluation were recorded by event related potential (ERP) method, compared with subjective evaluation scores and physical index of KES, explore the cognitive mechanism of the transformation of tactile sensation into neural impulses triggered by subtle mechanical stimuli such as material, texture, density and morphology in fabrics. By combining subjective evaluation of fabric tactile sensation, objective physical properties of fabrics and objective neurobiological signals, explore the neurophysiological mechanism of tactile cognition and the signal characteristics and time process of tactile information processing.

Design/methodology/approach

The ERP technology was first proposed by a British psychologist named Grey Walter. It is an imaging technique of noninvasive brain cognition, whose potential changes are related to the human physical and mental activities. ERP is different from electroencephalography (EEG) and evoked potentials (EP) on the fact that it cannot only record stimulated physical information which is transmitted to brain, but also response to the psychological activities which related to attention, identification, comparison, memory, judgment and cognition as well as to human’s neural physiological changes which are caused by cognitive process of the feeling by stimulation.

Findings

According to potential changes in the cerebral cortex evoked by touching four types of silk fabrics, human brain received the physical stimulation in the early stage (50 ms) of fabrics handle evaluation, and the P50 component amplitude showed negative correlation with fabric smoothness sensations. Around 200 ms after tactile stimulus onset, the amplitude of P200 component show positive correlation with the softness sensation of silk fabrics. The relationship between the amplitude of P300 and the sense of smoothness and softness need further evidence to proof.

Originality/value

In this paper, the brain potential changes caused by touching fabrics for handle evaluation were recorded by event related potential (ERP) method, compared with subjective evaluation scores and physical index of KES, the results shown that the maximum amplitude of P50 component evoked by fabric touching is related to the fabrics’ smoothness and roughness emotion, which means in the early stage processing of tactile sensation, the rougher fabrics could arouse more attention. In addition, the amplitude of P200 component shows positive correlation with the softness sensation of silk fabrics.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 February 2024

Atefeh Hemmati, Mani Zarei and Amir Masoud Rahmani

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of…

Abstract

Purpose

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of data-driven applications and the advances in data analysis techniques, the potential for data-adaptive innovation in IoV applications becomes an outstanding development in future IoV. Therefore, this paper aims to focus on big data in IoV and to provide an analysis of the current state of research.

Design/methodology/approach

This review paper uses a systematic literature review methodology. It conducts a thorough search of academic databases to identify relevant scientific articles. By reviewing and analyzing the primary articles found in the big data in the IoV domain, 45 research articles from 2019 to 2023 were selected for detailed analysis.

Findings

This paper discovers the main applications, use cases and primary contexts considered for big data in IoV. Next, it documents challenges, opportunities, future research directions and open issues.

Research limitations/implications

This paper is based on academic articles published from 2019 to 2023. Therefore, scientific outputs published before 2019 are omitted.

Originality/value

This paper provides a thorough analysis of big data in IoV and considers distinct research questions corresponding to big data challenges and opportunities in IoV. It also provides valuable insights for researchers and practitioners in evolving this field by examining the existing fields and future directions for big data in the IoV ecosystem.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 16 January 2024

Abdelrahim Alqudah, Esam Qnais, Salsabeel H. Sabi, Yousra Bseiso, Omar Gammoh and Mohammed Wedyan

The purpose of this study was to explore the potential benefits of Coriandrum sativum (C. sativum) on anxiety, depression, sleep quality and memory among students.

Abstract

Purpose

The purpose of this study was to explore the potential benefits of Coriandrum sativum (C. sativum) on anxiety, depression, sleep quality and memory among students.

Design/methodology/approach

This randomized controlled trial involved university students aged 18–25 years, who had no known allergies to C. sativum or were using psychotropic medication. After giving informed consent, participants were randomly assigned using a computer-generated random sequence to either 500 mg C. sativum seeds or a placebo. Primary outcomes measured changes in memory (prospective and retrospective memory questionnaire [PRMQ]), anxiety and depression (Hospital Anxiety and Depression Scale), while secondary outcomes assessed sleep quality (Pittsburgh sleep quality inventory [PSQI]).

Findings

A sample of 86 students with a mean age of 20.05 ± 1.6 years was selected for the study. Initial assessments ensured no significant differences in demographic or study variables between the control and intervention groups. Statistical analysis revealed significant improvements in memory (PRMQ: p = 0.006), anxiety (Hospital Anxiety Scale: p = 0.04) and depression (Hospital Depression Scale: p = 0.002), as well as in sleep quality (PSQI: p = 0.03) in the group receiving C. sativum compared to the control group.

Originality/value

This research offers initial insights into the potential benefits of C. sativum intake, specifically its role in enhancing memory performance and mitigating anxiety among student populations. The results present a compelling case for further research in this domain to solidify these preliminary conclusions.

Details

Nutrition & Food Science , vol. 54 no. 2
Type: Research Article
ISSN: 0034-6659

Keywords

Open Access
Article
Publication date: 27 December 2021

Hristo Trifonov and Donal Heffernan

The purpose of this paper is to describe how emerging open standards are replacing traditional industrial networks. Current industrial Ethernet networks are not interoperable;…

3201

Abstract

Purpose

The purpose of this paper is to describe how emerging open standards are replacing traditional industrial networks. Current industrial Ethernet networks are not interoperable; thus, limiting the potential capabilities for the Industrial Internet of Things (IIoT). There is no forthcoming new generation fieldbus standard to integrate into the IIoT and Industry 4.0 revolution. The open platform communications unified architecture (OPC UA) time-sensitive networking (TSN) is a potential vendor-independent successor technology for the factory network. The OPC UA is a data exchange standard for industrial communication, and TSN is an Institute of Electrical and Electronics Engineers standard for Ethernet that supports real-time behaviour. The merging of these open standard solutions can facilitate cross-vendor interoperability for Industry 4.0 and IIoT products.

Design/methodology/approach

A brief review of the history of the fieldbus standards is presented, which highlights the shortcomings for current industrial systems in meeting converged traffic solutions. An experimental system for the OPC UA TSN is described to demonstrate an approach to developing a three-layer factory network system with an emphasis on the field layer.

Findings

From the multitude of existing industrial network schemes, there is a convergence pathway in solutions based on TSN Ethernet and OPC UA. At the field level, basic timing measurements in this paper show that the OPC UA TSN can meet the basic critical timing requirements for a fieldbus network.

Originality/value

This paper uniquely focuses on the specific fieldbus standards elements of industrial networks evolution and traces the developments from the early history to the current developing integration in IIoT context.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 272