Search results

1 – 10 of 101
Article
Publication date: 30 September 2013

Mehmet Ermurat, Mehmet Ali Arslan, Fehmi Erzincanli and Ibrahim Uzman

This paper aims to investigate the effect of four important process parameters (i.e. laser focal distance, travel speed, feeding gas flow rate and standoff distance) on the size…

Abstract

Purpose

This paper aims to investigate the effect of four important process parameters (i.e. laser focal distance, travel speed, feeding gas flow rate and standoff distance) on the size of single clad geometry created by coaxial nozzle-based powder deposition by high power laser.

Design/methodology/approach

Design of experiments (DOE) and statistical analysis methods were both used to find optimum parameter combinations to get minimum sized clad, i.e. clad width and clad height. Factorial experiment arrays were used to design parameter combinations for creating experimental runs. Taguchi optimization methodology was used to find out optimum parameter levels to get minimum sized clad geometry. Response surface method was used to investigate the nonlinearity among parameters and variance analysis was used to assess the effectiveness level of each problem parameters.

Findings

The overall results show that wisely selected four problem parameters have the most prominent effects on the final clad geometry. Generally, minimum clad size was achieved at higher levels of gas flow rate, travel speed and standoff distance and at minimum spot size level of the laser focal distance.

Originality/value

This study presents considerable contributions in assessing the importance level of problems parameters on the optimum single clad geometry created laser-assisted direct metal part fabrication method. This procedure is somewhat complicated in understanding the effects of the selected problem parameters on the outcome. Therefore, DOE methodologies are utilized so that this operation can be better modeled/understood and automated for real life applications. The study also gives future direction for research based on the presented results.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2004

Xiaochun Li, Wenliang Tang and Anastasios Golnas

It is often important to acquire information such as temperature and strain values from metallic tools and structures in situ. With embedded sensors, structures are capable of…

Abstract

It is often important to acquire information such as temperature and strain values from metallic tools and structures in situ. With embedded sensors, structures are capable of monitoring parameters at critical locations not accessible to ordinary sensors. To embed sensors in the functional structures, especially metallic structures, layered manufacturing is a methodology capable of rapidly and economically integrating sensors during the production of tooling or structural components. Embedding techniques for both fiber‐optic sensors and thin‐film sensors have been developed.

Details

Sensor Review, vol. 24 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 31 July 2009

Lino Costa and Rui Vilar

The purpose of this paper is to review the state of the art of laser powder deposition (LPD), a solid freeform fabrication technique capable of fabricating fully dense functional…

4601

Abstract

Purpose

The purpose of this paper is to review the state of the art of laser powder deposition (LPD), a solid freeform fabrication technique capable of fabricating fully dense functional items from a wide range of common engineering materials, such as aluminum alloys, steels, titanium alloys, nickel superalloys and refractory materials.

Design/methodology/approach

The main R&D efforts and the major issues related to LPD are revisited.

Findings

During recent years, a worldwide series of R&D efforts have been undertaken to develop and explore the capabilities of LPD and to tap into the possible cost and time savings and many potential applications that this technology offers.

Originality/value

These R&D efforts have produced a wealth of knowledge, the main points of which are highlighted herein.

Details

Rapid Prototyping Journal, vol. 15 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 April 2020

Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…

11399

Abstract

Purpose

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.

Design/methodology/approach

In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.

Findings

The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.

Originality/value

This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 March 2011

Gangxian Zhu, Dichen Li, Anfeng Zhang, Gang Pi and Yiping Tang

The purpose of this paper is to investigate the influencing rule of the standoff distance variations between the nozzle outlet and the powder deposition point on forming…

Abstract

Purpose

The purpose of this paper is to investigate the influencing rule of the standoff distance variations between the nozzle outlet and the powder deposition point on forming dimensional accuracy.

Design/methodology/approach

The thin‐wall parts were built with three different standoff distances: 1 mm more than the powder focus length, equal to the powder focus length and 1 mm less than the powder focus length. Based on the experimental results, the steady standoff distance can be acquired and the difference between the building height and the ideal height of thin‐wall parts can be compensated automatically in several layers by theoretical calculation.

Findings

The experimental results show that the top surface unevenness of thin‐wall parts can be compensated automatically on the consequent successive layers when the standoff distance is less than the powder focal length from the nozzle outlet to the powder focal point, and the poorer results are obtained when the standoff distance is equal to or more than the powder focal length in the deposition of stainless steel 316L under open‐loop control.

Practical implications

The shape of parts affects the self‐regulation effect in practical applications, so the self‐regulation effect is useful when the single contour of parts is continuous straight faces and the surface of parts is perpendicular to the build platform, and will be useless for parts with holes.

Originality/value

According to the requirements under different process conditions in practical applications, one should first find out the relationship between the standoff distance and the building height of single‐trace cladding layer, and then use regression algorithm to obtain the stable standoff distance by simple theoretical calculation. The uniform building height, layer thickness and smooth surface can be obtained at the stable standoff distance under open‐loop control.

Details

Rapid Prototyping Journal, vol. 17 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 August 2014

Mehdi Soodi, Syed H. Masood and Milan Brandt

This paper aims to investigate the changes in tensile properties of novel functionally graded materials (FGMs) and wafer structures created by direct metal deposition (DMD…

Abstract

Purpose

This paper aims to investigate the changes in tensile properties of novel functionally graded materials (FGMs) and wafer structures created by direct metal deposition (DMD) additive manufacturing (AM) technology.

Design/methodology/approach

Laser-assisted DMD was used to create two innovative sets of metallic structures – the functionally graded and wafer-layered structures – using pairs of six different engineering alloys in different combinations. These alloys were selected due to their high popularity within a diverse range of industries and engineering applications. The laser-assisted DMD was selected as a suitable technique to create these complex structures because of its capability to deposit more than one alloy powder at a time. After creation of these structures, their tensile strength was tested in a series of tensile tests and the results were compared with those of single alloy samples.

Findings

It was observed that the mechanical properties of FGMs and wafer structure samples were clearly different from those of the single alloy samples, a fact which creates a whole pool of opportunities for development of new materials or structures with desired mechanical properties that cannot be achieved in single alloy parts.

Originality/value

The study demonstrates the application of the DMD process to produce unique structures and materials, which would be high in demand in engineering applications, where metallic parts are exposed to high loads and where excessive tensile stresses may adversely affect the performance of such parts.

Details

Rapid Prototyping Journal, vol. 20 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2018

Dmytro Svyetlichnyy, Michal Krzyzanowski, Robert Straka, Lukasz Lach and W. Mark Rainforth

The holistic numerical model based on cellular automata (CA) and lattice Boltzmann method (LBM) are being developed as part of an integrated modelling approach applied to study…

Abstract

Purpose

The holistic numerical model based on cellular automata (CA) and lattice Boltzmann method (LBM) are being developed as part of an integrated modelling approach applied to study the interaction of different physical mechanisms in laser-assisted additive layer manufacturing (ALM) of orthopaedic implants. Several physical events occurring in sequence or simultaneously are considered in the holistic model. They include a powder bed deposition, laser energy absorption and heating of the powder bed by the moving laser beam, leading to powder melting or sintering, fluid flow in the melted pool and flow through partly or not melted material, and solidification. The purpose of this study is to develop a structure of the holistic numerical model based on CA and LBM applicable for studying the interaction of the different physical mechanisms in ALM of orthopaedic implants. The model supposed to be compatible with the earlier developed CA-based model for the generation of the powder bed.

Design/methodology/approach

The mentioned physical events are accompanied by heat transfer in solid and liquid phases including interface heat transfer at the boundaries. The sintering/melting model is being developed using LBM as an independent numerical method for hydrodynamic simulations originated from lattice gas cellular automata. It is going to be coupled with the CA-based model of powder bed generation.

Findings

The entire laser-assisted ALM process has been analysed and divided on several stages considering the relevant physical phenomena. The entire holistic model consisting of four interrelated submodels has currently been developed to a different extent. The submodels include the CA-based model of powder bed generation, the LBM-CA-based model of heat exchange and transfer, the thermal solid-liquid interface model and the mechanical solid-liquid interface model for continuous liquid flow.

Practical implications

The results obtained can be used to explain the interaction of the different physical mechanisms in ALM, which is an intensively developing field of advanced manufacturing of metal, non-metal and composite structural parts, for instance, in bio-engineering. The proposed holistic model is considered to be a part of the integrated modelling approach being developed as a numerical tool for investigation of the co-operative relationships between multiphysical phenomena occurring in sequence or simultaneously during heating of the powder bed by the moving high energy heat source, leading to selective powder sintering or melting, fluid flow in the melted pool and through partly (or not) melted material, as well as solidification. The model is compatible with the earlier developed CA-based model for the generation of the powder bed, allowing for decrease in the numerical noise.

Originality/value

The present results are original and new for the study of the complex relationships between multiphysical phenomena occurring during ALM process based on selective laser sintering or melting, including fluid flow and heat transfer, identified as crucial for obtaining the desirable properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 June 2016

Romy Francis, Joseph Newkirk and Frank Liou

This paper aims to summarize the microstructure characterization of parts that were produced using a hybrid manufacturing process consisting of laser metal deposition (LMD) and…

Abstract

Purpose

This paper aims to summarize the microstructure characterization of parts that were produced using a hybrid manufacturing process consisting of laser metal deposition (LMD) and friction stir processing (FSP). This research was conducted to investigate the evolution of the microstructure following FSP and LMD and to study the possibility of producing or repairing parts with a forged-like microstructure using this hybrid technique.

Design/methodology/approach

The microstructure of the nugget regions obtained in the substrate weld, stir over deposit and deposit over stir experiments was investigated.

Findings

Highly refined grain size in the order of 1-2 μm was observed where FSP was performed over laser-deposited Ti–6Al–4V. Large equiaxed grains were observed in the experiment where subsequent deposition was carried over the stir. A decreasing grain size was also observed in the dilution zone (DZ) inside the nugget from the stir surface to the bottom of the DZ.

Practical implications

A highly refined microstructure formed from FSP is able to increase the fatigue life by delaying the fatigue crack initiation. Peters et al. (1980) reported that reducing the grain size from 12-15 μm to 1-2 μm in an equiaxed Ti–6Al–4V alloy corresponded with about 25 per cent increase in fatigue strengths at 10,000,000 cycles.

Originality/value

This proposed technical approach is a novel and effective method to produce forged-like parts using a metal additive manufacturing process.

Details

Rapid Prototyping Journal, vol. 22 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 October 2018

Jing Xu, Xizhi Gu, Donghong Ding, Zengxi Pan and Ken Chen

The purpose of this paper is to systematically review the published slicing methods for additive manufacturing (AM), especially the multi-direction and non-layerwise slicing…

1166

Abstract

Purpose

The purpose of this paper is to systematically review the published slicing methods for additive manufacturing (AM), especially the multi-direction and non-layerwise slicing methods, which are particularly suitable for the directed energy deposition (DED) process to improve the surface quality and eliminate the usage of support structures.

Design/methodology/approach

In this paper, the published slicing methods are clarified into three categories: the traditional slicing methods (e.g. the basic and adaptive slicing methods) performed in the powder bed fusion (PBF) system, the multi-direction slicing methods and non-layerwise slicing methods used in DED systems. The traditional slicing methods are reviewed only briefly because a review article already exists for them, and the latter two slicing methods are reviewed comprehensively with further discussion and outlook.

Findings

A few traditional slicing approaches were developed in the literature, including basic and adaptive slicing methods. These methods are efficient and robust when they are performed in the PBF system. However, they are retarded in the DED process because costly support structures are required to sustain overhanging parts and their surface quality and contour accuracy are not satisfactory. This limitation has led to the development of various multi-direction and non-layerwise slicing methods to improve the surface quality and enable the production of overhangs with minimum supports.

Originality/value

An original review of the AM slicing methods is provided in this paper. For the traditional slicing methods and the multi-direction and non-layerwise slicing method, the published slicing strategies are discussed and compared. Recommendations for future slicing work are also provided.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2017

Swee Leong Sing, Wai Yee Yeong, Florencia Edith Wiria, Bee Yen Tay, Ziqiang Zhao, Lin Zhao, Zhiling Tian and Shoufeng Yang

This paper aims to provide a review on the process of additive manufacturing of ceramic materials, focusing on partial and full melting of ceramic powder by a high-energy laser…

5577

Abstract

Purpose

This paper aims to provide a review on the process of additive manufacturing of ceramic materials, focusing on partial and full melting of ceramic powder by a high-energy laser beam without the use of binders.

Design/methodology/approach

Selective laser sintering or melting (SLS/SLM) techniques are first introduced, followed by analysis of results from silica (SiO2), zirconia (ZrO2) and ceramic-reinforced metal matrix composites processed by direct laser sintering and melting.

Findings

At the current state of technology, it is still a challenge to fabricate dense ceramic components directly using SLS/SLM. Critical challenges encountered during direct laser melting of ceramic will be discussed, including deposition of ceramic powder layer, interaction between laser and powder particles, dynamic melting and consolidation mechanism of the process and the presence of residual stresses in ceramics processed via SLS/SLM.

Originality/value

Despite the challenges, SLS/SLM still has the potential in fabrication of ceramics. Additional research is needed to understand and establish the optimal interaction between the laser beam and ceramic powder bed for full density part fabrication. Looking into the future, other melting-based techniques for ceramic and composites are presented, along with their potential applications.

Details

Rapid Prototyping Journal, vol. 23 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 101