Search results

1 – 10 of 653
Article
Publication date: 17 July 2018

Yan Baoxu and Kong Dejun

The amorphous Al-Ni-Fe-Gd coatings were fabricated to improve anti-corrosion performance of offshore platforms.

Abstract

Purpose

The amorphous Al-Ni-Fe-Gd coatings were fabricated to improve anti-corrosion performance of offshore platforms.

Design/methodology/approach

The amorphous Al-Ni-Fe-Gd coatings were first fabricated on S355 steel using the laser thermal spraying.

Findings

The amorphous forming capability and corrosion resistance increases with the laser powers increasing.

Research Limitations/implications

The amorphous Al-Ni-Fe-Gd coatings were applied on S355 steel of offshore platforms to increase its long-term heavy and anti-corrosion protection.

Originality/value

The amorphous Al-Ni-Fe-Gd coatings were first fabricated using a laser thermal spraying, improving its anti-corrosion.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 February 2020

Kong Dejun and Chen Haixiang

The purpose of this paper is to investigate the effects of laser power on the electrochemical corrosion performance in 3.5% NaCl, 0.1 M H2SO4 and 0.1 M NaOH solutions, which…

Abstract

Purpose

The purpose of this paper is to investigate the effects of laser power on the electrochemical corrosion performance in 3.5% NaCl, 0.1 M H2SO4 and 0.1 M NaOH solutions, which provided an experimental basis for the application of Al–Ti–Ni amorphous coating in marine environment.

Design/methodology/approach

Amorphous Al–Ti–Ni coatings were fabricated on S355 structural steel by laser thermal spraying (LTS) at different laser powers. The surface and cross-section morphologies, chemical element distribution, phases and crystallization behaviors of obtained coatings were analyzed using a scanning electron microscope, energy-dispersive X-ray spectroscope, X-ray diffraction and differential scanning calorimetry, respectively. The effects of laser power on the electrochemical corrosion performances of Al–Ti–Ni coatings in 3.5% NaCl, 0.1 M H2SO4 and 0.1 M NaOH solutions were investigated using an electrochemical workstation.

Findings

The crystallization temperature of Al–Ti–Ni coatings fabricated at the laser power of 1,300 and 1,700 W is ∼520°C, whereas that fabricated at the laser power of 1,500 W is ∼310°C. The coatings display excellent corrosion resistance in 3.5% NaCl and 0.1 M NaOH solutions, while a faster dissolution rate in 0.1 M H2SO4 solution. The coatings fabricated at the laser power of 1,300 and 1,700 W present the better electrochemical corrosion resistance in 3.5% NaCl and 0.1 M NaOH solutions, whereas that fabricated at the laser power of 1,500 W exhibits the better electrochemical corrosion resistance in 0.1 M H2SO4 solution.

Originality/value

In this work, Al-wire-cored Ti–Ni powder was first on S355 steel with the laser power of 1,300, 1,500 and 1,700 W, and the effects of laser power on the electrochemical corrosion performance in 3.5% NaCl, 0.1 M H2SO4 and 0.1 M NaOH solutions were investigated using an electrochemical workstation.

Article
Publication date: 16 August 2019

Zhou Weitong and Kong Dejun

This paper aims to enhance the corrosive wear and electrochemical corrosion of Ti–6Al–4V alloy.

Abstract

Purpose

This paper aims to enhance the corrosive wear and electrochemical corrosion of Ti–6Al–4V alloy.

Design/methodology/approach

A CoCrAlYTaSi alloy coating was fabricated on Ti–6Al–4V alloy using a laser thermal spraying (LTS). The surface and cross-section morphologies, chemical elements, phases and bonding strength of the obtained coating were analyzed using a scanning electron microscope, energy dispersive spectroscope, X-ray diffraction and scratch test, respectively, The corrosive wear and electrochemical corrosion of CoCrAlYTaSi coating in 3.5 Wt.% NaCl solution were investigated using a wear tester and electrochemical workstation, respectively.

Findings

The average coefficient of frictions (COFs) of CoCrAlYTaSi coating under the wear loads of 2, 4 and 6 N are 1.31, 1.02 and 0.88, respectively; and the corresponding wear rates are 0.66 × 10−4, 1.10 × 10−4 and 1.30 × 10−4 mm3·N–1·m–1, respectively. The wear mechanism under the wear load of 2 N is abrasive wear, while those under the wear loads of 4 and 6 N are adhesive wear and abrasive wear. The charge transfer resistance of CoCrAlYTaSi coating is 5.368 × 105 Ω·cm2, higher than 2.193 × 105 of the substrate.

Originality/value

In this study, a CoCrAlYTaSi coating was firstly fabricated on Ti–6Al–4V alloy using a LTS. Its corrosive wear and electrochemical corrosion in 3.5 Wt.% NaCl solution were investigated, which played a protective role of corrosive wear on Ti–6Al–4V alloy.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 July 2007

D. Rezakhani

Four thermal spray coatings were subjected to high temperature corrosive environments of oil‐fired boiler conditions to compare their corrosion protection under simulated…

1157

Abstract

Purpose

Four thermal spray coatings were subjected to high temperature corrosive environments of oil‐fired boiler conditions to compare their corrosion protection under simulated conditions. The coatings included FeCrAl, Tafaloy 45CT, which were arc‐sprayed, 50Ni‐50Cr and Cr3C2‐NiCr, which were coated by high velocity oxy fuel spray (HVOF) method.

Design/methodology/approach

The coating substrates used were SA213TP 347H, SA213 T11 and SA213 T22 alloys that are widely used as boiler tube materials. Specimens were covered with a synthetic ash mixture of 70 per cent V2O5‐20 per cent Na2SO4‐10 per cent NaCl and exposed to 550°C and 650oC°for 192 h (6 cycles). After high temperature corrosion tests, weight change curves were obtained; specimens were examined by metallographical techniques, scanning electron microscopy and EDX analyses.

Findings

Salt deposits attacked steels and coatings during the exposure. The corrosion rates were strongly affected by the composition of the scale formed adjacent to the steels and coatings surfaces. Austenitic steel was only bare material that experienced uniform corrosion in the tests. Ferritic steels were primarily attacked by grain boundary corrosion. Thermally sprayed coatings were mainly attached through oxides and voids at splat boundaries. FeCrAl and 50Ni‐50Cr were prone to spalling. Tafaloy 45CT is also a promising method for producing homogenous coatings. Cr3C2‐NiCr 80/20 coating remained mostly intact.

Originality/value

This paper provides useful information about corrosion behaviours of four coatings used for common boiler tubes. It shows with a practical explanation how the bare material and coatings react in corrosion simulated environments.

Details

Anti-Corrosion Methods and Materials, vol. 54 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 March 2021

Peng Li, Xiya Huang and Dejun Kong

The purpose of this paper is to investigate the effects of load and speed on the corrosive wear performance of Al coating in 3.5% NaCl solution, which provided an experimental…

Abstract

Purpose

The purpose of this paper is to investigate the effects of load and speed on the corrosive wear performance of Al coating in 3.5% NaCl solution, which provided an experimental reference for the anti-corrosion engineering on offshore platforms.

Design/methodology/approach

A layer of Al coating was prepared on S355 steel using an arc spraying. The corrosive wear test was carried out with CFT–1 type surface property tester. The effects of load and speed on the corrosive wear performance of Al coating were investigated and the wear mechanism was also discussed. The electrochemical tests were conducted using a CHI660E type electrochemical workstation, the anti-corrosion mechanism was analyzed.

Findings

The average coefficient of frictions (COFs) of Al coating under loads of 1.5, 2.5 and 3.5 N are 0.745, 0.847 and 0.423, the wear mechanism is abrasive wear. The average COFs of Al coating at the speeds of 200, 400 and 600 rpm are 0.745, 0.878 and 0.617, respectively, the wear mechanism at the speeds of 200 and 400 rpm are abrasive wear, while that at the speed of 600 rpm is abrasive wear and fatigue wear. The anti-corrosion mechanism is the isolation of Cl corrosion and cathodic protection of sacrificial anode.

Originality/value

This paper mainly studied corrosive wear and electrochemical corrosion performances of Al coating. This study hereby confirms that this manuscript is the original work and has not been published nor has it been submitted simultaneously elsewhere. This paper further confirms that all authors have checked the manuscript and have agreed to the submission.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 February 2019

Li Jiahong and Kong Dejun

The purpose of this paper is to improve the salt spray corrosion and electrochemical corrosion performances of H13 hot work mould steel, Cr–Ni coatings with the different Cr and…

Abstract

Purpose

The purpose of this paper is to improve the salt spray corrosion and electrochemical corrosion performances of H13 hot work mould steel, Cr–Ni coatings with the different Cr and Ni mass ratios are fabricated using a laser cladding (LC), which provides an experimental basis for the surface modification treatment of H13 steel.

Design/methodology/approach

Cr–Ni coatings with the different Cr and Ni mass ratios were firstly fabricated on H13 hot work mould steel using a laser cladding (LC). The salt spray corrosion (SSC) and electrochemical corrosion performances of Cr–Ni coatings in 3.5 Wt.% NaCl solution were investigated to analyze the corrosion mechanism, and the effect of mass ratios of Cr and Ni on their corrosion mechanism was discussed.

Findings

The laser cladded Cr–Ni coatings with the different Cr and Ni mass ratios are composed of Cr–Ni compounds, which are metallurgically combined with the substrate. The SSC resistance of Cr–Ni coating with the Cr and Ni mass ratios of 24:76 is the highest. The electrochemical corrosion resistance of Cr–Ni coating with the Cr and Ni mass ratio of 24:76 is the best among the three kinds of coatings.

Originality/value

In this study, the corrosion resistance of laser cladded Cr–Ni coatings with the Cr and Ni mass ratios of 17: 83, 20: 80 and 24: 76 was first evaluated using salt spray corrosion (SSC) and electrochemical tests, and the effect of mass ratios of Cr and Ni on their corrosion mechanism was discussed.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 May 2021

Feisen Wang, Sifei Ai, Qian Wang, Yinfen Cheng, Haiqi Huang, Chuang Cai, Di Xie, Hui Chen and Wei Hu

The purpose of this paper is to promote the corrosion resistance of the 5083-111H aluminum alloy by laser cleaning.

Abstract

Purpose

The purpose of this paper is to promote the corrosion resistance of the 5083-111H aluminum alloy by laser cleaning.

Design/methodology/approach

Laser with 2 ns pulse width was adopted in this project and the corrosion resistance of cleaned samples was tested by copper-accelerated salt spray (CASS). The surface morphology, elemental composition and distribution were then characterized by SEM. Moreover, surface morphology, elemental composition and distribution were also tested.

Findings

Results suggested a higher corrosion resistance was successfully obtained by laser cleaning. Compared with samples cleaned by 2000 grit sandpaper, mechanical cleaning resulted in a 53% larger height difference between the peak and valley. The content of the oxygen is 8.85% on the surface cleaned mechanically and the distribution is dependent on the distribution of aluminum whereas that of the laser cleaning sample is 24.41% and the distribution existed even in the Al-poor area.

Originality/value

In this project, the 2-ns laser cleaning was proved to have the capability to remove the oxide layer on the aluminum alloy surface while retaining an excellent corrosion resistance and smooth surface. Meanwhile, a thorough elemental distribution and smaller grain size lead to a smaller difference in elemental concentration. This retards the diffusion of oxygen into the substrate and hence increases the corrosion resistance of the surface.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 July 2019

Vikramjit Singh, Khushdeep Goyal and Rakesh Goyal

This paper aims to investigate the hot corrosion behavior of Ni-Cr and Cr3C2-NiCr coatings, deposited on T11, P91 boiler steels by detonation gun spray coating (D-Gun) process to…

124

Abstract

Purpose

This paper aims to investigate the hot corrosion behavior of Ni-Cr and Cr3C2-NiCr coatings, deposited on T11, P91 boiler steels by detonation gun spray coating (D-Gun) process to enhance high temperature corrosion resistance.

Design/methodology/approach

Hot corrosion studies were conducted in secondary super heater zone of boiler at 900 °C for 10 cycles on bare and D-Gun coated steel specimens. The microhardness and porosity values of as-sprayed coatings were measured before exposing the specimens in the boiler environment. Each cycle consisted 100 h of heating in the boiler environment followed by 20 min of cooling in air. The weight change measurements were performed after each cycle to establish the kinetics of corrosion using thermogravimetric technique. X-ray diffraction, SEM techniques were used to analyze the corroded specimens.

Findings

Uncoated boiler steel experienced higher weight loss. The Cr3C2-NiCr coating was found to be more protective than Ni-Cr coating. The phases revealed the formation of oxide scale on coated specimens, mainly consist of nickel and chromium, which are reported to be protective against the hot corrosion.

Originality/value

There is very limited reported literature on hot corrosion behavior of Ni-Cr and Cr3C2-NiCr coatings deposited on the T11 and P91 substrates by detonation gun (D-gun) spray technique. T11 and P91 alloy steels have been chosen for this study because these two alloys are used to manufacture boiler tubes used in Indian thermal power plants.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 June 2019

Karanjit Singh, Khushdeep Goyal and Rakesh Goyal

This paper aims to investigate hot corrosion behaviour of different Cr3C2–NiCr coatings on boiler tube steel.

Abstract

Purpose

This paper aims to investigate hot corrosion behaviour of different Cr3C2–NiCr coatings on boiler tube steel.

Design/methodology/approach

High velocity oxy fuel technique has been used to deposit different coatings on commercially available ASTM-SA213-T22 boiler tube steel. The hot corrosion studies have been performed in molten salt environment at 900°C temperature in silicon tube furnace in laboratory.

Findings

The results showed that uncoated superalloy suffered intense spalling and the weight change was massive during each cycle on studies of hot corrosion 900°C. The 100 per cent NiCr and 10 per cent (Cr3C2) – 90 per cent (NiCr) coatings provided better protection to T22 steel against the hot corrosion because of the formation of Ni and Cr3C2 layers.

Originality/value

In this research a variety of coatings have been used. This research work has been aimed to investigate the hot corrosion behavior of Boiler Steel b with different Cr3C2–NiCr coatings, under molten salt environment in Silicon tube furnace at 900°C, under cyclic conditions.

Details

World Journal of Engineering, vol. 16 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 December 2004

Xiaochun Li, Wenliang Tang and Anastasios Golnas

It is often important to acquire information such as temperature and strain values from metallic tools and structures in situ. With embedded sensors, structures are capable of…

Abstract

It is often important to acquire information such as temperature and strain values from metallic tools and structures in situ. With embedded sensors, structures are capable of monitoring parameters at critical locations not accessible to ordinary sensors. To embed sensors in the functional structures, especially metallic structures, layered manufacturing is a methodology capable of rapidly and economically integrating sensors during the production of tooling or structural components. Embedding techniques for both fiber‐optic sensors and thin‐film sensors have been developed.

Details

Sensor Review, vol. 24 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 653