Search results

1 – 5 of 5
Article
Publication date: 20 March 2017

Michele Chiumenti, Xin Lin, Miguel Cervera, Wei Lei, Yuxiang Zheng and Weidong Huang

This paper aims to address the numerical simulation of additive manufacturing (AM) processes. The numerical results are compared with the experimental campaign carried out at…

1351

Abstract

Purpose

This paper aims to address the numerical simulation of additive manufacturing (AM) processes. The numerical results are compared with the experimental campaign carried out at State Key Laboratory of Solidification Processing laboratories, where a laser solid forming machine, also referred to as laser engineered net shaping, is used to fabricate metal parts directly from computer-aided design models. Ti-6Al-4V metal powder is injected into the molten pool created by a focused, high-energy laser beam and a layer of added material is sinterized according to the laser scanning pattern specified by the user.

Design/methodology/approach

The numerical model adopts an apropos finite element (FE) activation technology, which reproduces the same scanning pattern set for the numerical control system of the AM machine. This consists of a complex sequence of polylines, used to define the contour of the component, and hatches patterns to fill the inner section. The full sequence is given through the common layer interface format, a standard format for different manufacturing processes such as rapid prototyping, shape metal deposition or machining processes, among others. The result is a layer-by-layer metal deposition which can be used to build-up complex structures for components such as turbine blades, aircraft stiffeners, cooling systems or medical implants, among others.

Findings

Ad hoc FE framework for the numerical simulation of the AM process by metal deposition is introduced. Description of the calibration procedure adopted is presented.

Originality/value

The objectives of this paper are twofold: firstly, this work is intended to calibrate the software for the numerical simulation of the AM process, to achieve high accuracy. Secondly, the sensitivity of the numerical model to the process parameters and modeling data is analyzed.

Open Access
Article
Publication date: 27 April 2020

Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…

11423

Abstract

Purpose

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.

Design/methodology/approach

In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.

Findings

The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.

Originality/value

This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 1 January 1993

This report, presented as the keynote paper at Surface Mount International, is the culmination of joint efforts to assess the use of lead in electronics assembly. The study, which…

Abstract

This report, presented as the keynote paper at Surface Mount International, is the culmination of joint efforts to assess the use of lead in electronics assembly. The study, which will be presented in two parts, involved the collaboration of the following participants: B. R. Allenby and J. P. Ciccarelli, AT&T, Basking Ridge, New Jersey; I. Artaki, J. R. Fisher and D. Schoenthaler, AT&T Bell Laboratories, ERC, Princeton, New Jersey; T. A. Carroll, Hughes, El Segundo, California; D. W. Dahringer, Y. Degani, R. S. Freund, T. E. Graedel, A. M. Lyons and J. T. Plewes, AT&T Bell Laboratories, Murray Hill, New Jersey; C. Gherman and H. Solomon, GE Aerospace, Philadelphia, Pennsylvania; C. Melton, Motorola Inc., Schaumburg, Illinois; G. C. Munie, AT&T Bell Laboratories, Indian Hill, Naperville, Illinois; and N. Socolowski, Alpha Metals, Jersey City, New Jersey.

Details

Circuit World, vol. 19 no. 2
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 6 February 2023

Hong Zhang, Lu-Kai Song, Guang-Chen Bai and Xue-Qin Li

The purpose of this study is to improve the computational efficiency and accuracy of fatigue reliability analysis.

Abstract

Purpose

The purpose of this study is to improve the computational efficiency and accuracy of fatigue reliability analysis.

Design/methodology/approach

By absorbing the advantages of Markov chain and active Kriging model into the hierarchical collaborative strategy, an enhanced active Kriging-based hierarchical collaborative model (DCEAK) is proposed.

Findings

The analysis results show that the proposed DCEAK method holds high accuracy and efficiency in dealing with fatigue reliability analysis with high nonlinearity and small failure probability.

Research limitations/implications

The effectiveness of the presented method in more complex reliability analysis problems (i.e. noisy problems, high-dimensional issues etc.) should be further validated.

Practical implications

The current efforts can provide a feasible way to analyze the reliability performance and identify the sensitive variables in aeroengine mechanisms.

Originality/value

To improve the computational efficiency and accuracy of fatigue reliability analysis, an enhanced active DCEAK is proposed and the corresponding fatigue reliability framework is established for the first time.

Details

International Journal of Structural Integrity, vol. 14 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 5 of 5