Search results

1 – 10 of over 1000
Article
Publication date: 17 October 2016

Benoit Rosa, Pascal Mognol and Jean-Yves Hascoët

Direct metal deposition (DMD) with laser is an additive manufacturing process enabling rapid manufacturing of complex metallic and thin parts. However, the final quality of…

Abstract

Purpose

Direct metal deposition (DMD) with laser is an additive manufacturing process enabling rapid manufacturing of complex metallic and thin parts. However, the final quality of DMD-manufactured surfaces is a real issue that would require a polishing operation. Polishing processes are usually based on abrasive or chemical techniques. These conventional processes are composed by many drawbacks such as accessibility of complex shapes, environmental impacts, high time consumption and cost, health risks for operators, etc. […] This paper aims to solve these problems and improve surface quality by investigating the laser polishing (LP) process.

Design/methodology/approach

Based on melting material by laser, the LP process enables the smoothing of initial topography. However, the DMD process and the LP processes are based on laser technology. In this context, the laser DMD process is used directly on the same machine for the polishing operation. Currently, few studies focus on LP of additive laser manufacturing surfaces, and it tends to limit the industrial use of additive manufacturing technology. The proposed study describes an experimental analysis of LP surfaces obtained by DMD process.

Findings

The investigation results in the improvement of a complete final surface quality, according to LP parameters. For mastering LP processes, operating parameters are modelled.

Originality/value

This experimental study introduces the LP of thin and complex DMD parts, to develop LP applications. The final objective is to create a LP methodology for optimizing the final topography and productivity time according to parts’ characteristics.

Details

Rapid Prototyping Journal, vol. 22 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Purpose

This paper aims to investigate the effect of centrifugal disk finishing (CDF) technique on the surface and subsurface characteristics of the fused deposited modeling (FDM) parts in both theoretical and experimental aspects. From theoretical aspect, a novel theoretical model is developed as a function of layer deposition orientation, layer thickness, finishing working time, density ratio and hardness ratio to estimate the surface roughness profile of FDM part at different finishing conditions and finishing time intervals. Meanwhile, from the experimental aspect, an experimental campaign was performed under different mechanical and mechanical-chemical finishing conditions to verify the theoretical model and also assess the surface and subsurface characteristics of the polished parts.

Design/methodology/approach

The theoretical model commences with an approximation of surface profile of the FDM part through a sequence of parabola arcs, continues with the calculation of reference line and machined surface profile and leads to a formulation of surface roughness of as-printed and polished surface. In the experimental section, the FDM parts are polished under dry, pure water, 25% and 50% volumetric aqueous acetone solutions finishing conditions through CDF technique.

Findings

The comparison between experimental and theoretical results reveals 9% mean absolute error between theoretical and experimental results. Meanwhile, Rq reduction percentage of polished parts under dry, pure water, 25% and 50% aqueous acetone solutions are 66.1%, 54.5%, 56.9% and 67.2%, respectively. The scanning electron microscopy results reveal severe layer damage in dry finishing condition, while the application of 50% aqueous acetone as a polishing solution completely eliminates layer damage. Another promising finding was sticky material phenomenon on the surface of polished part under 25% finishing condition. The Shore hardness test illustrates that the surface hardness improvement of the polished parts under dry, pure water, 25% and 50% aqueous acetone solutions finishing conditions are 8.4%, 2.25%, 4.36% and 10.8%, respectively. The results also revealed that the dimension variation of polished parts under dry, pure water, 25% and 50% aqueous acetone solutions are 0.634%, 0.525%, 0.545% and 0.608%, respectively. The edge profile radius of the as-printed part is 134 µm, while the edge profiles radius of the polished parts under dry, pure water, 25% aqueous acetone solution and 50% aqueous acetone solution are 785.5 µm, 545.5 µm, 623.5 µm and 721.5 µm, respectively, at the polishing time of 720 min.

Originality/value

This paper fulfills an identified need to study the benefits of the mechanical-chemical polishing technique in comparison to mechanical and chemical polishing strategy of the FDM parts for the first time. Beside the experimental campaign, the novel analytical formulation of surface roughness as a function of mechanical properties of abrasive media and FDM part and finishing specifications provides a valuable insight in the case of material-removal processes.

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 August 2011

Evren Yasa, Jan Deckers and Jean‐Pierre Kruth

Selective laser melting (SLM) is a powder metallurgical (PM) additive manufacturing process whereby a three‐dimensional part is built in a layer‐wise manner. During the process, a…

6650

Abstract

Purpose

Selective laser melting (SLM) is a powder metallurgical (PM) additive manufacturing process whereby a three‐dimensional part is built in a layer‐wise manner. During the process, a high intensity laser beam selectively scans a powder bed according to the computer‐aided design data of the part to be produced and the powder metal particles are completely molten. The process is capable of producing near full density (∼98‐99 per cent relative density) and functional metallic parts with a high geometrical freedom. However, insufficient surface quality of produced parts is one of the important limitations of the process. The purpose of this study is to apply laser re‐melting using a continuous wave laser during SLM production of 316L stainless steel and Ti6Al4V parts to overcome this limitation.

Design/methodology/approach

After each layer is fully molten, the same slice data are used to re‐expose the layer for laser re‐melting. In this manner, laser re‐melting does not only improve the surface quality on the top surfaces, but also has the potential to change the microstructure and to improve the obtained density. The influence of laser re‐melting on the surface quality, density and microstructure is studied varying the operating parameters for re‐melting such as scan speed, laser power and scan spacing.

Findings

It is concluded that laser re‐melting is a promising method to enhance the density and surface quality of SLM parts at a cost of longer production times. Laser re‐melting improves the density to almost 100 per cent whereas 90 per cent enhancement is achieved in the surface quality of SLM parts after laser re‐melting. The microhardness is improved in the laser re‐molten zone if sufficiently high‐energy densities are provided, probably due to a fine‐cell size encountered in the microstructure.

Originality/value

There has been extensive research in the field of laser surface modification techniques, e.g. laser polishing, laser hardening and laser surface melting, applied to bulk materials produced by conventional manufacturing processes. However, those studies only relate to laser enhancement of surface or sub‐surface properties of parts produced using bulk material. They do not aim at enhancement of core material properties, nor surface enhancement of (rough) surfaces produced in a PM way by SLM. This study is carried out to cover the gap and analyze the advantages of laser re‐melting in the field of additive manufacturing.

Details

Rapid Prototyping Journal, vol. 17 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 23 August 2021

Iván La Fé-Perdomo, Jorge Andres Ramos-Grez, Gerardo Beruvides and Rafael Alberto Mujica

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the…

Abstract

Purpose

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the process and optimization approaches reported. All these need to be taken into account for the ongoing development of the SLM technique, particularly in health care applications. The outcomes from this review allow not only to summarize the main features of the process but also to collect a considerable amount of investigation effort so far achieved by the researcher community.

Design/methodology/approach

This paper reviews four significant areas of the selective laser melting (SLM) process of metallic systems within the scope of medical devices as follows: established and novel materials used, process modeling, process tracking and quality evaluation, and finally, the attempts for optimizing some process features such as surface roughness, porosity and mechanical properties. All the consulted literature has been highly detailed and discussed to understand the current and existing research gaps.

Findings

With this review, there is a prevailing need for further investigation on copper alloys, particularly when conformal cooling, antibacterial and antiviral properties are sought after. Moreover, artificial intelligence techniques for modeling and optimizing the SLM process parameters are still at a poor application level in this field. Furthermore, plenty of research work needs to be done to improve the existent online monitoring techniques.

Research limitations/implications

This review is limited only to the materials, models, monitoring methods, and optimization approaches reported on the SLM process for metallic systems, particularly those found in the health care arena.

Practical implications

SLM is a widely used metal additive manufacturing process due to the possibility of elaborating complex and customized tridimensional parts or components. It is corroborated that SLM produces minimal amounts of waste and enables optimal designs that allow considerable environmental advantages and promotes sustainability.

Social implications

The key perspectives about the applications of novel materials in the field of medicine are proposed.

Originality/value

The investigations about SLM contain an increasing amount of knowledge, motivated by the growing interest of the scientific community in this relatively young manufacturing process. This study can be seen as a compilation of relevant researches and findings in the field of the metal printing process.

Details

Rapid Prototyping Journal, vol. 27 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2013

Frank Alifui‐Segbaya, Paul Foley and R.J. Williams

Rapid manufacture‐produced cobalt chromium alloys are beginning to be used in dentistry but there are few published results relating to their properties. The purpose of this paper…

575

Abstract

Purpose

Rapid manufacture‐produced cobalt chromium alloys are beginning to be used in dentistry but there are few published results relating to their properties. The purpose of this paper is to determine the corrosion resistance of a rapid manufacture‐produced dental alloy and compare it to a standard dental casting alloy.

Design/methodology/approach

In accordance with ISO 22674, ten samples of each alloy were fabricated in approximately 45 mm×10 mm×2 mm rectangular prisms, a sample number in excess of the standard requirements. The groups were further divided into those with highly polished surfaces and those with electrobrightened surfaces. Each sample was immersed in artificial saliva, suspended by a nylon thread for 42 days at 37°C. Readings for cobalt, chromium and molybdenum ions released into solutions were obtained using an atomic absorption spectrometer at 1, 4, 7, 14, 21, 28, 35, and 42 day intervals at a detection limit of one part per million.

Findings

Ion release of cobalt, chromium and molybdenum was well within the threshold prescribed by the standard. The alloys were safe for use as dental devices with respect to the above metals. The rapid manufacture alloy however performed better. In addition the data indicated that for both alloys, there was no discernable difference between a polished and an electrobrightened surface.

Originality/value

The rapid manufacture alloy studied shows a safe level of corrosion resistance with respect to cobalt, chromium and molybdenum according to ISO definitions. Further biocompatibility tests are recommended.

Details

Rapid Prototyping Journal, vol. 19 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 1985

AN order for an advanced CNC controlled ultrasonic knife profiling machine for the volume production of carbon fibre and glass fibre helicopter blade components is among £426,000…

Abstract

AN order for an advanced CNC controlled ultrasonic knife profiling machine for the volume production of carbon fibre and glass fibre helicopter blade components is among £426,000 new orders announced by Design Technologies Ltd, the new Wellingborough‐based supplier of advanced CNC high speed profile cutting systems formed after the recent management buy out of Desitech Ltd with the support of the British Linen Bank. These orders are in addition to the £1m work already in progress at the time of the buy out in April.

Details

Aircraft Engineering and Aerospace Technology, vol. 57 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 13 October 2020

Eduardo Cuesta, Braulio J. Alvarez, Pablo Zapico and Sara Giganto

This study aims to analyze the effect of the different common post-processes on the geometrical and dimensional accuracy of selective laser melting (SLM) parts.

Abstract

Purpose

This study aims to analyze the effect of the different common post-processes on the geometrical and dimensional accuracy of selective laser melting (SLM) parts.

Design/methodology/approach

An artefact has been designed including cubic features formed by planar surfaces orientated according to the machine axes, covering all the X-Y area of the working space. The artefact has been analyzed both geometrically (flatness, parallelism) and dimensionally (sizes, distances) from coordinate measuring machine measurement results at three stages, namely, as-built, after sand-blasting and after stress-relieving heat treatment.

Findings

Results from the SLM machine used in this study lead to smaller parts than the nominal ones. This effect depends on the direction of the evaluated dimension of the parts, i.e. X, Y or Z direction and is differently affected by the sandblasting post-process (average erosion ratio of 68, 54 and 9 µm, respectively), being practically unaltered by the HT applied after.

Originality/value

This paper shows the influence, from a geometric and dimensional point of view, of two of the most common post-processes used after producing SLM parts, such as sand-blasting and stress-relieving heat treatment, that have not been considered in previous research.

Details

Rapid Prototyping Journal, vol. 26 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 February 2021

Mohammadreza Lalegani Dezaki, Mohd Khairol Anuar Mohd Ariffin and Saghi Hatami

The purpose of this paper is to review research studies on process optimisation and machine development that lead to the enhancement of final products in various aspects of the…

1927

Abstract

Purpose

The purpose of this paper is to review research studies on process optimisation and machine development that lead to the enhancement of final products in various aspects of the fused deposition modelling (FDM) process.

Design/methodology/approach

An overview of the literature, focussing on process parameters, machine developments and material characterisations. This study investigates recent research studies that studied FDM capabilities in printing a vast range of materials from thermoplastics to metal alloys.

Findings

FDM is one of the most common techniques in additive manufacturing (AM) processes. Many parameters in this technology have effects on three-dimensional printed products. Therefore, it is necessary to obtain the optimum elements, for example, build orientation, layer thickness, nozzle diameter, infill pattern and bed temperature. By selecting a proper variable range of parameters, the layers adhere strongly and building end-use products of high quality are achievable. A vast range of materials and their properties from polymers to composite-based polymers are presented. Novel techniques to print metal alloys and composites are examined to increase the productivity of the FDM process. Additionally, defects such as shrinkage and warpage are discussed to eliminate the system’s limitations and improve the quality of final products. Multi-axis and mobile machines brought enhancements throughout the process to eliminate obstacles such as staircase defects in the conventional FDM process. In brief, recent developments were identified and a summary of major improvements was discussed in this study for future research.

Originality/value

This paper is an overview that provides information about research and developments in FDM. This review focusses on process optimisation and obstacles in printing polymers, composites, geopolymers and novel materials. Therefore, machine characteristics were examined to find out the accessibility of printing novel materials for different applications.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000