Search results

1 – 10 of 235
Article
Publication date: 1 February 1998

Bijan Shirinzadeh

The accurate measurement of the position and orientation of a robot end‐effector is the most critical issue for calibrating of robotic devices. Calibration methods provide tools…

769

Abstract

The accurate measurement of the position and orientation of a robot end‐effector is the most critical issue for calibrating of robotic devices. Calibration methods provide tools to improve the accuracy of robots without modification to the mechanical unit or its control architecture. However, such calibration techniques require a large number of measurements. Dynamic measurement of position and orientation not only provides a solution to this problem, it also establishes the foundation for development of techniques to improve the robot’s dynamic accuracy. The concept of laser‐interferometry‐based measurement has been proposed. A system based on this concept is generally referred to as a laser tracking system (LTS). This paper describes the principle of laser‐interferometry‐based tracking. Further, the structure and various components within such a system are presented. A kinematic model for laser tracking is described and the performance of the system in its present configuration is presented. The application potential of such an approach to position and orientation (pose) measurement is also briefly described.

Details

Industrial Robot: An International Journal, vol. 25 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 1999

Bijan Shirinzadeh, Pek Loo Teoh, Chee Wei Foong and YongDong Liu

Laser interferometry‐based sensing (LIS) technique has been proposed and established recently to track and perform dynamic measurements on a moving end‐effector of a robot…

Abstract

Laser interferometry‐based sensing (LIS) technique has been proposed and established recently to track and perform dynamic measurements on a moving end‐effector of a robot manipulator. In this paper, a technique using LIS system to perform guidance of a manipulator is proposed. The LIS system is used as a sensor to guide the end‐effector of a robot manipulator. This is to be accomplished through the implementation of guidance error determination and compensation, and path generation in the control algorithm. This technique can be used to accurately guide the manipulator’s end‐effector to a specified location or along a specified path with a high level of accuracy. The structure and various components within the system and the control strategy are also presented.

Details

Sensor Review, vol. 19 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 February 2019

Muhammad Nubli Zulkifli, Fuaida Harun and Azman Jalar

This paper aims to analyze the effect of surface roughness and hardness of leadframe on the bondability of gold (Au) wedge bond using in situ inspection of laser interferometer

Abstract

Purpose

This paper aims to analyze the effect of surface roughness and hardness of leadframe on the bondability of gold (Au) wedge bond using in situ inspection of laser interferometer and its relationship with the deformation and wire pull strength.

Design/methodology/approach

The in situ inspection of ultrasonic vibration waveform through the changes of vertical axis (y-axis) amplitude of wire bonder capillary was carried out using laser interferometer to analyze the formation of Au wedge bond. The relationship between the changes of ultrasonic waveform of capillary with the deformation and the pull strength was analyzed to evaluate the bondability of Au wedge bonds.

Findings

It was observed that the changes in vertical axis amplitude of ultrasonic vibration waveform of wire bonder capillary can be used to describe the process of bonding formation. The loss of ultrasonic energy was exhibited in ultrasonic vibration waveform of wire bonding on leadframe that has higher value of roughness (leadframe A) as compared to that of leadframe that has lower value of roughness (leadframe B). The lower pull strength obtained by Au wedge bond further confirms the reduction of bond formation because of the higher deformation on leadframe A as compared to that of leadframe B.

Originality/value

The relationship between in situ measurement using laser interferometer with the bondability or deformation and wire pull strength of Au wedge bonds on different surface roughness and hardness of leadframes is still lacking. These findings provide a valuable data in analyzing the bonding mechanisms that can be identified based on the in situ measurement of ultrasonic vibration and the bondability of Au wedge bonds.

Details

Microelectronics International, vol. 36 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 July 2007

Robert Bogue

To illustrate the importance of nanometrology, the discipline of metrology at the nanoscale, and to describe the techniques involved.

1322

Abstract

Purpose

To illustrate the importance of nanometrology, the discipline of metrology at the nanoscale, and to describe the techniques involved.

Design/methodology/approach

This firstly highlights the importance of nanometrology and considers some future applications with particularly demanding metrological requirements. The main techniques used to characterise nanoscale devices are described. Research and the activities of certain national metrology institutes are discussed.

Findings

This illustrates that nanometrology is a critical discipline that will underpin the nanotechnology revolution. It shows that a range of techniques exist for characterising nanomaterials and devices, although most are costly and complex. It further shows that nanometrology developments are underway on a global scale.

Originality/value

This paper demonstrates the importance of nanometrology and describes in detail the techniques used.

Details

Sensor Review, vol. 27 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 June 2010

Van‐Tsai Liu, Chien‐Hung Liu, Hau‐Wei Li, Chieh‐Li Chen, Chun‐Liang Lin and Yu‐Chen Lin

The purpose of this paper is to develop the multi‐degree‐of‐freedom measurement system to test, verify, and control the nano‐measuring machine.

Abstract

Purpose

The purpose of this paper is to develop the multi‐degree‐of‐freedom measurement system to test, verify, and control the nano‐measuring machine.

Design/methodology/approach

A generic differential model approach is constructed to numerically describe the hysteresis effects of piezoelectric actuators. Based on the generic differential model, a feedforward compensator with a proportional integral (PI) type controller is designed to compensate for the hysteresis nonlinearity of a piezoelectric actuated three degree‐of‐freedom coplanar nanostage which can provide high‐precision applications.

Findings

The Z‐tilts (z, pitch, and roll motion) error compensation stage of the nano‐measuring machine is accomplished. Moreover, a high‐resolution laser interferometer is used to measure position accurately.

Originality/value

This paper contributes to develop a tracking control design method for the piezoelectric motion platform which combines a closed‐loop feedforward compensator with a PI type controller.

Details

Kybernetes, vol. 39 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 January 2012

Mohamed Slamani, Albert Nubiola and Ilian Bonev

The purpose of this paper is to investigate the use of a laser tracker, a laser interferometer system and a telescopic ballbar for assessing the positioning performance of a…

1910

Abstract

Purpose

The purpose of this paper is to investigate the use of a laser tracker, a laser interferometer system and a telescopic ballbar for assessing the positioning performance of a six‐axis industrial serial robot. The paper also aims to illustrate the limitations of these three metrology instruments for the assessment of robot positioning performance and to demonstrate the inadequacy of simplistic performance tests.

Design/methodology/approach

Specific test methods in the case of the laser interferometer system and the telescopic ballbar are proposed. Measurements are analyzed in accordance to the ISO 9283 norm.

Findings

It is found that, in static conditions and after a relatively short warm‐up, the unidirectional position repeatability of the non‐calibrated industrial robot under study (an ABB IRB 1600) is better than 37 μm, the unidirectional orientation repeatability is at worst 87 μrad, the linear position accuracy is better than 650 μm, and the rotation accuracy is at worst 2.8 mrad (mainly because of the sixth robot axis). It was also found that the dynamic (radial) errors due to vibrations can be up to approximately ±250 μm along a small circular path at TCP speed of 700 mm/s.

Practical implications

It is pointed out that the use of a laser tracker (or any other large range portable 3D measurement system) is questionable for assessing – let alone analyzing in depth – the unidirectional position repeatability of some of today's industrial robots. It is also demonstrated that the laser interferometer system can be used for measuring linear errors along a linear path of motion as well as angular errors about axes orthogonal to the path of motion. Finally, it is shown that the telescopic ballbar is an excellent, comparably low‐cost, high‐precision tool for assessing the static and dynamic positioning performance of industrial robots and its use in robotics should be further developed.

Originality/value

This work is the first to detail the use of three metrology equipments for assessing the positioning performance of an industrial robot. Experimental results are presented and discussed. Some guidelines for optimizing the positioning performance of an industrial robot are provided.

Details

Industrial Robot: An International Journal, vol. 39 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 August 2013

Mohamed Slamani and Ilian A. Bonev

This paper proposes a simple technique for assessing the effect of gear transmission errors in a six‐axis industrial serial robot, as these errors can vitally affect the…

Abstract

Purpose

This paper proposes a simple technique for assessing the effect of gear transmission errors in a six‐axis industrial serial robot, as these errors can vitally affect the industrial robot's positioning accuracy.

Design/methodology/approach

The experimental procedure is developed using a laser interferometer system to measure bidirectional linear position errors for an ABB IRB 1600 industrial robot. A simple technique based on fast Fourier transformation (FFT) analysis is devised and implemented for the characterization, evaluation, and quantification of gear transmission errors. Structural deformation and backlash error are also discussed.

Findings

The authors found that the major sources of error affecting the performance of the robot come from joints two and three. They also found that eccentricity errors, structural deformations, and backlash are the most important sources of error affecting the accuracy and the repeatability of the industrial robot studied. Additional tests show that the robot's first joint has relatively poor bidirectional repeatability.

Practical implications

The usefulness of a laser tracker (or any other large range portable 3D measurement system) is questionable for assessing – let alone analyzing in depth – the gear transmission errors of some of today's industrial robots. The authors demonstrate in this paper that a laser interferometer system can successfully measure gear transmission errors very accurately. The proposed methodology is simple, efficient, and easy to use for the characterization and quantification of the errors.

Originality/value

This work is the first to detail the use of the laser interferometer system for the characterization of the gear transmission errors of an industrial robot. A methodology has been developed and implemented for very accurately quantifying the effects of gear transmission errors, structural deformations, and backlash. The proposed methodology greatly simplifies the measurement set‐up and accelerates error quantification.

Details

Industrial Robot: An International Journal, vol. 40 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 1984

A new type of laser interferometer, developed at the National Physical Laboratory and produced by Linear Instruments, is challenging existing methods for accurate measurement and…

Abstract

A new type of laser interferometer, developed at the National Physical Laboratory and produced by Linear Instruments, is challenging existing methods for accurate measurement and calibration. Managing director Kenneth Owen talked about it to Jack Hollingum.

Details

Sensor Review, vol. 4 no. 2
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 19 October 2015

Mohamed Slamani, Ahmed Joubair and Ilian A. Bonev

The purpose of this paper is to present a technique for assessing and comparing the static and dynamic performance of three different models of small six-axis industrial robots…

1016

Abstract

Purpose

The purpose of this paper is to present a technique for assessing and comparing the static and dynamic performance of three different models of small six-axis industrial robots using a Renishaw XL80 laser interferometer system, a FARO ION laser tracker and a Renishaw QC20-W telescoping ballbar.

Design/methodology/approach

Specific test methods are proposed in this work, and each robot has been measured in a similar area of its working envelope. The laser interferometer measurement instrument is used to assess the static positioning performance along three linear and orthogonal paths. The laser tracker is used to assess the contouring performance at different tool center point (TCP) speeds along a triangular tool path, whereas the telescoping ballbar is used to assess the dynamic positioning performance for circular paths at different TCP speeds and trajectory radii.

Findings

It is found that the tested robots behave differently, and that the static accuracy of these non-calibrated robots varies between 0.5 and 2.3 mm. On the other hand, results show that these three robots can provide acceptable corner tracking at low TCP speeds. However, a significant overshoot at the corner is observed at high TCP speed for all the robots tested. It was also found that the smallest increment of Cartesian displacement (Cartesian resolution) that can be taken by the tested robots is approximately 50 μm.

Practical implications

The technique used in this paper allows extremely accurate diagnosis of the robot performance, which makes it possible for the robot user to determine whether the robot is in good or bad condition. It can also help the decision-maker to select the most suitable industrial robot to achieve the desired task with minimum cost and specific application ability.

Originality/value

This paper proposed a new method based on the performance verification approach for solving the robot selection problem for flexible manufacturing systems. Furthermore, despite their importance, bidirectional repeatability and Cartesian resolution are never specified by the manufacturers of industrial robots nor are they described in the ISO 9283:1998 guide, and they are rarely the object of performance assessments. In this work, specific tests are performed to check and quantify the bidirectional repeatability and the Cartesian resolution of each robot.

Details

Industrial Robot: An International Journal, vol. 42 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 2000

D.F.L Jenkins, W.W. Clegg, L. He, J. Windmill, G. Tunstall, X. Liu, C. Chilumbu and A. Li

The areal (surface area density of bits) storage density of magnetic hard disks is continually increasing, with typical available commercial storage densities being around…

1549

Abstract

The areal (surface area density of bits) storage density of magnetic hard disks is continually increasing, with typical available commercial storage densities being around 10Gbits/in2. It is predicted that densities in excess of 40Gbits/in2 will be possible before the year 2003. A number of key issues arise from this development, such as the need to determine and control accurately the dynamic flying height (z‐axis) of the read‐write head, which is affected by the apparent distortion of the disk surface due to rotation‐induced disk resonance. As a result of the increasing storage density the positional control of the head in the plane of the disk (xy plane) also becomes more critical. This paper deals generally, but with a particular emphasis on optical and piezoelectric sensors used in our laboratory for characterisation of storage media and systems.

Details

Sensor Review, vol. 20 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 235