Search results

1 – 10 of 58
Article
Publication date: 4 July 2016

Barbara Szymanik and Miroslaw Woloszyn

– The purpose of this paper is to present two methods of detection for landmines with minimal metal content.

Abstract

Purpose

The purpose of this paper is to present two methods of detection for landmines with minimal metal content.

Design/methodology/approach

First, two methods of landmine detection are presented: magnetic and infrared with microwave heating. For each method the numerical algorithm of an object’s position and properties determination are presented. Furthermore, the experimental results of several landmines detection using both methods are presented.

Findings

It is possible to detect the landmines with minimal metal content using both magnetic and infrared methods. It is also possible to determine the detected objects’ exact position and properties using developed numerical algorithms.

Originality/value

The idea of using the magnetic method to detect the plastic landmines is, to the best knowledge of the authors, new. For both methods, the numerical algorithms of objects’ parameters determination are original.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 September 2011

Mohammad Reza Badello, Behzad Moshiri, Babak N. Araabi and Hamed Tebianian

The purpose of this paper is to design and implement a landmine detection robot (Venus) equipped with three electromagnetic sensors and controlled by ordered weighted…

Abstract

Purpose

The purpose of this paper is to design and implement a landmine detection robot (Venus) equipped with three electromagnetic sensors and controlled by ordered weighted averaging (OWA) sensor fusion approach. Higher numbers of detected mines in a fixed time interval and lower total power consumption are the achieved goals of this research.

Design/methodology/approach

OWA sensor fusion is exploited for data combination in this paper. Unlike most other landmine detection robots, Venus has three electromagnetic sensors, the positions of which can be adjusted according to the environmental conditions. Also, a novel approach for OWA weight dedication using Gaussian distribution function is applied and the whole idea is evaluated practically in several randomly mined fields. Finally, for better evaluation, performance of Venus is compared with the other two landmine detection robots.

Findings

The simulation and experimental results proved that in a predetermined interval of time, not only total energy consumption is reduced, but also by expanding the surface and the depth of influence of electromagnetic waves, the number of detected mines is considerably raised.

Social implications

In contrast to the regular demining process, which is relatively expensive and complicated, the landmine detection method proposed in this research is surprisingly simple, cost effective, and efficient. Therefore, it may be attractive for every company or organization in this field of research.

Originality/value

The paper describes research which implements and evaluates a novel control approach based on OWA sensor fusion method, a new way of using Gaussian distribution function for determining OWA weights, and also an adaptive physical configuration for sensors based on environmental conditions.

Article
Publication date: 1 June 2005

Homayoun Najjaran and Andrew A. Goldenberg

Describes a dual‐arm mobile manipulator that can autonomously scan natural terrain using a typical handheld landmine detector in a manner similar to a human operator.

Abstract

Purpose

Describes a dual‐arm mobile manipulator that can autonomously scan natural terrain using a typical handheld landmine detector in a manner similar to a human operator.

Design/methodology/approach

Presents a terrain‐scanning robot that consists of two articulated arms mounted on an off‐road remotely operated vehicle. One arm carries a laser and four ultrasonic rangefinders to build a terrain map. The map is used in real time to generate an obstacle‐free path for the second arm that manipulates the landmine detector autonomously. The arms are mounted on the vehicle that is controlled by an operator from a safe distance. Motion planning and control of the robot is carried out using an embedded computer that is linked to a host computer to transmit the detector data and operator commands.

Findings

Finds that the terrain‐scanning robot can effectively manipulate a relatively large landmine detector on rugged terrain with undulations and obstacles.

Research limitations/implications

Proposes real‐time motion planning that may be equally applicable to other mobile manipulators.

Practical implications

Provides a technology that together with state‐of‐the‐art landmine sensors will offer a safe solution for detecting hidden landmines and clearing them from the postwar countries.

Originality/value

Introduces the concept of a dual‐arm mobile terrain scanning robot for landmine detection in off‐road missions and civilian areas where truck‐mounted detectors are inefficient.

Details

Industrial Robot: An International Journal, vol. 32 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 April 1997

James Trevelyan

There is a widespread belief that the global land‐mine problem can be solved using a combination of advanced robotics, sophisticated sensors and powerful computing…

Abstract

There is a widespread belief that the global land‐mine problem can be solved using a combination of advanced robotics, sophisticated sensors and powerful computing devices. Recent research results suggest that this confidence is misplaced. There is little likelihood of sensing improvements in the short‐term and all the proposed robotic solutions are too expensive to be practical for humanitarian demining operations in countries like Angola, Afghanistan and Cambodia. However, simple equipment improvements and low‐cost robotic devices might provide some useful improvements in safety and cost‐effectiveness in the short‐ to medium‐term. Reviews contributions in robotics and sensing technology, and proposes some practical directions for future work.

Details

Industrial Robot: An International Journal, vol. 24 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 December 2003

Jon Rigelsford

134

Abstract

Details

Sensor Review, vol. 23 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 October 2008

J.A. Cobano, R. Ponticelli and P. Gonzalez de Santos

The purpose of this paper is to present the results obtained in the field tests of a new system for detection and location of antipersonnel land mines.

Abstract

Purpose

The purpose of this paper is to present the results obtained in the field tests of a new system for detection and location of antipersonnel land mines.

Design/methodology/approach

The paper presents briefly the overall system and then it focuses on the description and analysis of the results obtained in three basic experiments: accuracy for following trajectories, mine detection and capability for walking over landmines.

Findings

The paper finds that the system has been assessed positively for this specific application because it satisfies the initial system requirements.

Research limitations/implications

The research and experiments have been focused on irregular terrain with low vegetation and free from obstacles. Further research will be focused on the complete coverage of a terrain including large vegetation and obstacles.

Practical implications

This paper presents practical results for a very well defined application: humanitarian de‐mining. However, many of the results related with robot location, following of trajectories and general control techniques are applicable to any mobile robot for outdoor applications in general.

Originality/value

This paper is the first work (to the best author's knowledge) reporting experimental features of a walking system for humanitarian de‐mining. The paper does not only report on the mobile platform, but also on the scanning manipulator and sensor head features.

Details

Industrial Robot: An International Journal, vol. 35 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 August 2012

Roemi Fernández, Héctor Montes, Carlota Salinas, Pablo González de Santos and Manuel Armada

The purpose of this paper is to introduce the design of a training tool intended to improve deminers' technique during close‐in detection tasks.

Abstract

Purpose

The purpose of this paper is to introduce the design of a training tool intended to improve deminers' technique during close‐in detection tasks.

Design/methodology/approach

Following an introduction that highlights the impact of mines and improvised explosive devices (IEDs), and the importance of training for enhancing the safety and the efficiency of the deminers, this paper considers the utilization of a sensory tracking system to study the skill of the hand‐held detector expert operators. With the compiled information, some critical performance variables can be extracted, assessed, and quantified, so that they can be used afterwards as reference values for the training task. In a second stage, the sensory tracking system is used for analysing the trainee skills. The experimentation phase aims to test the effectiveness of the elements that compose the sensory system to track the hand‐held detector during the training sessions.

Findings

The proposed training tool will be able to evaluate the deminers' efficiency during the scanning tasks and will provide important information for improving their competences.

Originality/value

This paper highlights the need of introducing emerging technologies for enhancing the current training techniques for deminers and proposes a sensory tracking system that can be successfully utilised for evaluating trainees' performance with hand‐held detectors.

Details

Industrial Robot: An International Journal, vol. 39 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 June 2017

Hector Montes, Lisbeth Mena, Roemi Fernández and Manuel Armada

The aim of this paper is to introduce a hexapod walking robot specifically designed for applications in humanitarian demining, intended to operate autonomously for several…

Abstract

Purpose

The aim of this paper is to introduce a hexapod walking robot specifically designed for applications in humanitarian demining, intended to operate autonomously for several hours. To this end, the paper presents an experimental study for the evaluation of its energy efficiency.

Design/methodology/approach

First, the interest of using a walking robot for detection and localization of anti-personnel landmines is described, followed by the description of the mechanical system and the control architecture of the hexapod robot. Second, the energy efficiency of the hexapod robot is assessed to demonstrate its autonomy for performing humanitarian demining tasks. To achieve this, the power consumed by the robot is measured and logged, with a number of different payloads placed on-board (always including the scanning manipulator arm assembled on the robot front end), during the execution of a discontinuous gait on flat terrain.

Findings

The hexapod walking robot has demonstrated low energy consumption when it is carrying out several locomotion cycles with different loads on it, which is fundamental to have a desired autonomy. It should be considered that the robot has a mass of about 250 kg and that it has been loaded with additional masses of up to 170 kg during the experiments, with a consumption of mean power of 72 W, approximately.

Originality/value

This work provides insight on the use of a walking robot for humanitarian demining tasks, which has high stability and an autonomy of about 3 hours for a robot with high mass and high payload. In addition, the robot can be supervised and controlled remotely, which is an added value when it is working in the field.

Details

Industrial Robot: An International Journal, vol. 44 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 May 2006

Hui Shao and Kenzo Nonami

According to UN estimates more than 2,000 people are killed or maimed every month by land‐mines. Although some mechanical solutions to their removal have been proposed…

Abstract

Purpose

According to UN estimates more than 2,000 people are killed or maimed every month by land‐mines. Although some mechanical solutions to their removal have been proposed, this is still heavily dependent on human manipulation. This study seeks to posit a robotic solution to this extremely hazardous operation.

Design/methodology/approach

Examines an active tele‐operated master‐slave robot hand system in which the master and slave hands have completely different structures.

Findings

A secure grasping strategy with a neuro‐fuzzy position control is optional, involving robust position control and accurate force control.

Originality/value

To the best of the authors' knowledge, the configuration and control system of the tele‐operation master‐slave robotic hand is novel in the applied robotics research field.

Details

Industrial Robot: An International Journal, vol. 33 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 March 2008

R. Ponticelli, E. Garcia, P. Gonzalez de Santos and M. Armada

Humanitarian de‐mining tasks require the use of specific detecting sets to detect landmines. These sets are normally based on a one‐point sensor, which must be moved over…

Abstract

Purpose

Humanitarian de‐mining tasks require the use of specific detecting sets to detect landmines. These sets are normally based on a one‐point sensor, which must be moved over the infested terrain by a combination of a scanning manipulator and a mobile platform. The purpose of this paper is to present the development of the sensor head and the scanning manipulator.

Design/methodology/approach

The manipulator needs sensors in order to negotiate ground irregularities and detect obstacles in the path of the mine‐detecting set. All of the sensors must be integrated into a sensor head that is in charge of both detecting land mines and providing overall sensor functions for the mobile platform's steering controller.

Findings

The sensor head is based on a commercial mine‐detecting set and a ground‐tracking set based on a network of range sensors tailor‐made for this purpose; the scanning manipulator is based on a mechanism with five degrees of freedom.

Originality/value

The design assessment and some experiments are reported.

Details

Industrial Robot: An International Journal, vol. 35 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 58