Search results

21 – 30 of 102
Article
Publication date: 13 August 2021

Manju V.M. and Ganesh R.S.

Multiple-input multiple-output (MIMO) combined with multi-user massive MIMO has been a well-known approach for high spectral efficiency in wideband systems, and it was targeted to…

Abstract

Purpose

Multiple-input multiple-output (MIMO) combined with multi-user massive MIMO has been a well-known approach for high spectral efficiency in wideband systems, and it was targeted to detect the MIMO signals. The increasing data rates with multiple antennas and multiple users that share the communication channel simultaneously lead to higher capacity requirements and increased complexity. Thus, different detection algorithms were developed for the Massive MIMO.

Design/methodology/approach

This paper focuses on the various literature analyzes on various detection algorithms and techniques for MIMO detectors. Here, it reviews several research papers and exhibits the significance of each detection method.

Findings

This paper provides the details of the performance analysis of the MIMO detectors and reveals the best value in the case of each performance measure. Finally, it widens the research issues that can be useful for future researchers to be accomplished in MIMO massive detectors

Originality/value

This paper has presented a detailed review of the detection of massive MIMO on different algorithms and techniques. The survey mainly focuses on different types of channels used in MIMO detections, the number of antennas used in transmitting signals from the source to destination, and vice-versa. The performance measures and the best performance of each of the detectors are described.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1205

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2021

Radu Constantin Parpala, Diana Popescu and Cristina Pupaza

The mechanical performances of 3D-printed parts are influenced by the manufacturing variables. Many studies experimentally evaluate the impact of the process parameters on…

Abstract

Purpose

The mechanical performances of 3D-printed parts are influenced by the manufacturing variables. Many studies experimentally evaluate the impact of the process parameters on specimens’ static and dynamic behavior with the aim of tailoring the mechanical response of the prints. However, this experimental approach is hampered by the very large number of parameters, 3D printers and materials, the development of computer simulation models being thus required. In the context, this study aims to fill a gap by experimentally investigating the influence of infill related parameters over the vibrations of 3D-printed specimens, as well as to propose and validate a parametric finite element (FE) model for the prediction of eigenfrequencies.

Design/methodology/approach

A generally applicable FE model is not yet available for the 3D printing technology based on the material extrusion process due to the large number of parameters settings that determine a large variability of outcomes. Hence, the idea of developing numerical simulation models that address sets of parameters and assess their impact on a certain mechanical property. For the natural frequency, the influence of the infill density and infill line width is studied in this paper. An FE script that automates the generation of the model geometry by using the considered set of parameters is developed and run. The results of the modal analysis are compared to the experimental values for validating the script.

Findings

Based on the experimental results, a linear regression between the weight of the part and the first natural frequency is established. The response surfaces indicate that the infill density is the most significant parameter of influence. The weight-frequency function is then used for the prediction of the natural frequency of specimens manufactured with other infill parameters and values, including different infill patterns.

Practical implications

As the malfunctions or mechanical damages can be caused by the resonant vibration of parts during use, this research develops a FE-parameterized model that evaluates and predicts the eigenfrequencies of 2D printed parts to prevent these undesirable events. The targeted functional applications are those in which 3D-printed polymer parts are used, such as drone arms or drone propellers.

Originality/value

This research studies the influence of process parameters on the natural frequency of 3D-printed polylactic acid specimens, a topic scarcely addressed in literature. It also proposes a new approach for the development of parameterized FE models for sets of parameters, instead of a general model, to reduce the time and resources allocated to the experimental tests. Such a model is provided in this paper for evaluating the influence of infill parameters on 3D prints eigenfrequency. The numerical model is validated for other infill settings.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 2001

Herbert De Gersem, Hans Vande Sande and Kay Hameyer

The harmonic balanced finite element method offers a valuable alternative to the transient finite element method for the quasi‐static simulation of electromagnetic devices…

Abstract

The harmonic balanced finite element method offers a valuable alternative to the transient finite element method for the quasi‐static simulation of electromagnetic devices operating at steady‐state. The specially designed iterative solver, the adaptive relaxation of the non‐linear loop and the embedding of the harmonic balanced finite element method within a state‐of‐the‐art finite element package, leads to a solver in the frequency domain that is competitive to time stepping. The benefits of this approach are illustrated by its application to an inductor with a ferromagnetic core.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 1984

Bahram Nour‐Omid and Robert L. Taylor

A data structure is described that stores only the non‐zero terms of the assembled stiffness matrix. This storage scheme results in considerable reduction in memory demand during…

Abstract

A data structure is described that stores only the non‐zero terms of the assembled stiffness matrix. This storage scheme results in considerable reduction in memory demand during the assembly phase of a finite element program. Therefore, larger matrices can be formed in the main memory of the computer. When secondary store must be used this approach reduces the I/O cost during the assembly stage. An algorithm is derived that starts with the element connectivity information and generates the compacted data structure. The element matrices are then assembled to form the stiffness matrix with this storage scheme. The assembly algorithm is described and a FORTRAN listing of the routines is presented. The reduction in storage is demonstrated with the aid of numerical examples.

Details

Engineering Computations, vol. 1 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 June 2000

R.V.N. Melnik

The dynamics of coupling between spectrum and resolvent under ε‐perturbations of operator and matrix spectra are studied both theoretically and numerically. The phenomenon of…

4157

Abstract

The dynamics of coupling between spectrum and resolvent under ε‐perturbations of operator and matrix spectra are studied both theoretically and numerically. The phenomenon of non‐trivial pseudospectra encountered in these dynamics is treated by relating information in the complex plane to the behaviour of operators and matrices. On a number of numerical results we show how an intrinsic blend of theory with symbolic and numerical computations can be used effectively for the analysis of spectral problems arising from engineering applications.

Details

Engineering Computations, vol. 17 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 October 2012

S. Karimi Vanani and A. Aminataei

The purpose of this paper is to present an algorithm based on operational Tau method (OTM) for solving fractional Fokker‐Planck equation (FFPE) with space‐ and time‐fractional…

Abstract

Purpose

The purpose of this paper is to present an algorithm based on operational Tau method (OTM) for solving fractional Fokker‐Planck equation (FFPE) with space‐ and time‐fractional derivatives. Fokker‐Planck equation with positive integer order is also considered.

Design/methodology/approach

The proposed algorithm converts the desired FFPE to a set of algebraic equations using orthogonal polynomials as basis functions. The paper states some concepts, properties and advantages of proposed algorithm and its applications for solving FFPE.

Findings

Some illustrative numerical experiments including linear and nonlinear FFPE are given and some comparisons are made between OTM and variational iteration method, Adomian decomposition method and homotpy perturbation method.

Originality/value

Results demonstrate some capabilities of the proposed algorithm such as the simplicity, the accuracy and the convergency. Also, this is the first presentation of this algorithm for FFPE.

Article
Publication date: 1 December 2004

Gh. R. Heravi and R. Attarnejad

The purpose of this paper is to improve the effectiveness of ordinary reduction methods performance, in nonlinear dynamic analysis. In this paper, the error vector due to linear…

Abstract

The purpose of this paper is to improve the effectiveness of ordinary reduction methods performance, in nonlinear dynamic analysis. In this paper, the error vector due to linear and nonlinear dynamic analysis in generalized subspaces is extracted, and is decomposed into two independent components, namely outside and inside components. Based on the inside error component, a new iterative reduction method, one‐dimensional generalized subspace procedure (ODGS), is proposed where an innovative criterion is defined for updating the base vectors necessary for stiffness changes in nonlinear dynamic analysis. In this study, the performance of ODGS for linear and nonlinear analysis of elastodynamic systems including non‐proportional damping based on the Ritz generalized subspace has been proposed. Numerical examples show the competency of the proposed method in both economy and exactness. Time saving gained from the ODGS method could be recompensed to get much more accurate results consuming the same CPU time. This iterative method is more effective than the ordinary reduction methods. Since the method is directly derived from the discrete model based on the finite element method (FEM), the complexity of the structure does not affect directly the effectiveness of ODGS. Therefore, whenever the FEM is effectively capable to represent the topology of the structure, the ODGS results will also represent the system response properly. Same as any other reduction methods, accuracy of this iterative reduction method is directly related to the number of selected Ritz vectors, according to convergence criterion.

Details

Engineering Computations, vol. 21 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 March 2013

Achuthan C. Pankaj, G. Shanthini, M.V. Shivaprasad and M. Manjuprasad

Traditional dynamic and flutter analysis demands a detailed finite element model of the aircraft in terms of its mass and stiffness distribution. However, in absence of these…

Abstract

Purpose

Traditional dynamic and flutter analysis demands a detailed finite element model of the aircraft in terms of its mass and stiffness distribution. However, in absence of these details, modal parameters obtained from experimental tests can be used to predict the flutter characteristics of an aircraft. The purpose of this paper is to develop an improved and reliable method to predict the flutter characteristics of an aircraft structure of unknown configuration under an anticipated aerodynamic loading using software such as MSC Nastran and experimental modal parameters (such as mode shapes, natural frequencies and damping) from ground vibration tests.

Design/methodology/approach

A finite element model with nodes representing the test points on the aircraft is created with appropriate boundary constraints. A direct matrix abstraction program has been written for NASTRAN software that carries out a normal modes analysis and replaces the mass normalized eigenvalues and vectors with the experimentally obtained modal parameters. The flutter analysis proceeds with the solution of the flutter equation in the flutter module of NASTRAN.

Findings

The method has been evaluated for a light composite aircraft and its results have been compared with flight flutter tests and the flutter speeds obtained from the finite element model with actual stiffness and mass distributions of the aircraft.

Research limitations/implications

The methodology developed helps in the realistic prediction of flutter characteristics of a structure with known geometric configuration and does not need material properties, mass or stiffness distributions. However, experimental modal parameters of each configuration of the aircraft are required for flutter speed estimation.

Practical implications

The proposed methodology requires experimental modal parameters of each configuration of the aircraft for flutter speed estimation.

Originality/value

The paper shows that an effective method to predict flutter characteristics using modal parameters from ground vibration tests has been developed.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 13 February 2024

Ehab Samir Mohamed Mohamed Soliman

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this…

34

Abstract

Purpose

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this paper was to obtain a composite lifting lug with a higher level of strength that is capable of carrying loads without failure.

Design/methodology/approach

The vibration and static behaviors of steel and composite lifting lugs have been investigated using finite element analysis (FEA), ANSYS software. The main consideration in the design of the composite (CFRP) lifting lug was that the displacement of both steel and composite lugs was the same under the same load. Hence, by using the FEA displacement result of the steel lifting lug, the thickness of the composite lifting lug is determined using FEA.

Findings

Compared to the steel lifting lug, the composite (CFRP) lifting lug has much lower stresses and much higher natural frequencies. Static behavior was experienced by the composite lifting lug, showing a reduction in von Mises stress, third principal stress and XZ shear stress, respectively, by 48.4%, 34.6% and 89.8%, respectively, when compared with the steel lifting lug. A higher natural frequency of mode shape swaying in X (258.976√1,000 Hz) was experienced by the composite lifting lug when compared to the steel lifting lug (195.935√1,000 Hz). The safe strength of the design composite lifting lug has been proven by FEA results, which showed that the composite (CFRP) lifting lug has a higher factor of safety in all developed stresses than the steel lifting lug. According to von Mises stress, the factor of safety of the composite lifting lug is increased by 76% when compared to the steel lifting lug. The von Mises stress at the edge of the hole in the composite lifting lug is reduced from 23.763 MPa to 20.775 MPa when compared to the steel lifting lug.

Originality/value

This work presents the designed composite (CFRP) lifting lug, which will be able to carry loads with more safety than a steel one.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

21 – 30 of 102