Search results

1 – 10 of 25
Open Access
Article
Publication date: 14 March 2022

Mitja Garmut and Martin Petrun

This paper presents a comparative study of different stator-segmentation topologies of a permanent magnet synchronous machine (PMSM) used in traction drives and their effect on…

1131

Abstract

Purpose

This paper presents a comparative study of different stator-segmentation topologies of a permanent magnet synchronous machine (PMSM) used in traction drives and their effect on iron losses. Using stator segmentation allows one to achieve more significant copper fill factors, resulting in increased power densities and efficiencies. The segmentation of the stators creates additional air gaps and changes the soft magnetic material’s material properties due to the cut edge effect. The aim of this paper is to present an in-depth analysis of the influence of stator segmentation on iron losses. The main goal was to compare various segmentation methods under equal excitation conditions in terms of their influence on iron loss.

Design/methodology/approach

A transient finite element method analysis combined with an extended iron-loss model was used to evaluate discussed effects on the stator’s iron losses. The workflow to obtain a homogenized airgap length accounting for cut edge effects was established.

Findings

The paper concludes that the segmentation in most cases slightly decreases the iron losses in the stator because of the overall reduced magnetic flux density B due to the additional air gaps in the magnetic circuit. An increase of the individual components, as well as total power loss, was observed in the Pole Chain segmentation design. In general, segmentation did not change the total iron losses significantly. However, different segmentation methods resulted in the different distortion of the magnetic field and, consequently, in different iron loss compositions. The analysed segmentation methods exhibited different iron loss behaviour with respect to the operation points of the machine. The final finding is that analysed stator segmentations had a negligible influence on the total iron loss. Therefore, applying segmentation is an adequate measure to improve PMSMs as it enables, e.g. increase of the winding fill factor or simplifying the assembly processes, etc.

Originality/value

The influence of stator segmentation on iron losses was analysed. An in-depth evaluation was performed to determine how the discussed changes influence the individual iron loss components. A workflow was developed to achieve a computationally cheap homogenized model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 18 January 2022

Valentin Hanser, Markus Schöbinger and Karl Hollaus

This work introduces an efficient and accurate technique to solve the eddy current problem in laminated iron cores considering vector hysteresis.

Abstract

Purpose

This work introduces an efficient and accurate technique to solve the eddy current problem in laminated iron cores considering vector hysteresis.

Design/methodology/approach

The mixed multiscale finite element method based on the based on the T,Φ-Φ formulation, with the current vector potential T and the magnetic scalar potential Φ allows the laminated core to be modelled as a single homogeneous block. This means that the individual sheets do not have to be resolved, which saves a lot of computing time and reduces the demands on the computer system enormously.

Findings

As a representative numerical example, a single-phase transformer with 4, 20 and 184 sheets is simulated with great success. The eddy current losses of the simulation using the standard finite element method and the simulation using the mixed multiscale finite element method agree very well and the required simulation time is tremendously reduced.

Originality/value

The vector Preisach model is used to account for vector hysteresis and is integrated into the mixed multiscale finite element method for the first time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 13 September 2023

Stjepan Frljić, Bojan Trkulja and Ana Drandić

The purpose of this paper is to present a methodology for calculating eddy current losses in the core of a single-phase power voltage transformer, which, unlike a standard power…

Abstract

Purpose

The purpose of this paper is to present a methodology for calculating eddy current losses in the core of a single-phase power voltage transformer, which, unlike a standard power transformer, has an open-type core (I-type core). In those apparatus, reduction of core losses is achieved by using a multipart open-type core that is created by merging a larger number of leaner cores.

Design/methodology/approach

3D FEM approach for calculation of eddy current losses in open-type cores based on a weak AλA formulation is presented. Method in which redundant degrees of freedom are eliminated is shown. This enables faster convergence of the simulation. The results are benchmarked using simulations with standard AVA formulation.

Findings

Results using weak AλA formulation with elimination of redundant degrees of freedom are in agreement with both simulation using only weak AλA formulation and with simulation based on AVA formulation.

Research limitations/implications

The presented methodology is valid in linear cases, whereas the nonlinear case will be part of future work.

Practical implications

Presented procedure can be used for the optimization when designing the open-type core of apparatus like power voltage transformers.

Originality/value

The presented method is specifically adapted for calculating eddy currents in the open-type core. The method is based on a weak formulation for the magnetic vector potential A and the current vector potential λ, incorporating numerical homogenization and a straightforward elimination of redundant degrees of freedom, resulting in faster convergence of the simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 8 April 2024

Oussama-Ali Dabaj, Ronan Corin, Jean-Philippe Lecointe, Cristian Demian and Jonathan Blaszkowski

This paper aims to investigate the impact of combining grain-oriented electrical steel (GOES) grades on specific iron losses and the flux density distribution within a…

Abstract

Purpose

This paper aims to investigate the impact of combining grain-oriented electrical steel (GOES) grades on specific iron losses and the flux density distribution within a single-phase magnetic core.

Design/methodology/approach

This paper presents the results of finite-element method (FEM) simulations investigating the impact of mixing two different GOES grades on losses of a single-phase magnetic core. The authors used different models: a 3D model with a highly detailed geometry including both saturation and anisotropy, as well as a simplified 2D model to save computation time. The behavior of the flux distribution in the mixed magnetic core is analyzed. Finally, the results from the numerical simulations are compared with experimental results.

Findings

The specific iron losses of a mixed magnetic core exhibit a nonlinear decrease with respect to the GOES grade with the lowest losses. Analyzing the magnetic core behavior using 2D and 3D FEM shows that the rolling direction of the GOES grades plays a critical role on the nonlinearity variation of the specific losses.

Originality/value

The novelty of this research lies in achieving an optimum trade-off between the manufacturing cost and the core efficiency by combining conventional and high-performance GOES grade in a single-phase magnetic core.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 27 April 2022

Elina Ilén, Farid Elsehrawy, Elina Palovuori and Janne Halme

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is…

2681

Abstract

Purpose

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is prerequisite for the product acceptance of e-textiles, has been rarely examined. This paper aims to report a systematic study of the laundry durability of solar cells embedded in textiles.

Design/methodology/approach

This research included small commercial monocrystalline silicon solar cells which were encapsulated with functional synthetic textile materials using an industrially relevant textile lamination process and found them to reliably endure laundry washing (ISO 6330:2012). The energy harvesting capability of eight textile laminated solar cells was measured after 10–50 cycles of laundry at 40 °C and compared with light transmittance spectroscopy and visual inspection.

Findings

Five of the eight textile solar cell samples fully maintained their efficiency over the 50 laundry cycles, whereas the other three showed a 20%–27% decrease. The cells did not cause any visual damage to the fabric. The result indicates that the textile encapsulated solar cell module provides sufficient protection for the solar cells against water, washing agents and mechanical stress to endure repetitive domestic laundry.

Research limitations/implications

This study used rigid monocrystalline silicon solar cells. Flexible amorphous silicon cells were excluded because of low durability in preliminary tests. Other types of solar cells were not tested.

Originality/value

A review of literature reveals the tendency of researchers to avoid standardized textile washing resistance testing. This study removes the most critical obstacle of textile integrated solar energy harvesting, the washing resistance.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 8 August 2019

Karl Hollaus

The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by…

1049

Abstract

Purpose

The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty.

Design/methodology/approach

A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied.

Findings

Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM.

Originality/value

The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 7 September 2023

Sergey E. Zirka, Dennis Albert, Yuriy I. Moroz, Lukas Daniel Domenig and Robert Schürhuber

This paper aims to propose a method of parametrizing topological transformer model at high flux densities in the core.

Abstract

Purpose

This paper aims to propose a method of parametrizing topological transformer model at high flux densities in the core.

Design/methodology/approach

The approach proposed is based on terminal voltages and currents measured in a special purpose saturation test whose data are combined with typical saturation curves of grain-oriented electrical steels; the modeling is carried out in the ATPDraw program.

Findings

The authors corroborate experimentally the necessity of dividing the zero sequence impedance between all transformer phases and propose a method of the individual representation of the legs and yokes. This eliminates the use of nonexistent leakage inductances of primary and secondary windings.

Practical implications

The presented modeling approach can be used for predicting inrush current events and in the evaluation of the impact caused by geomagnetically induced currents (GICs).

Originality/value

The proposed approach is completely original and will contribute to a better understanding of the transients occurring in a transformer under abnormal conditions, such as inrush current events and GICs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 28 August 2021

Luca Gabriele De Vivo Nicoloso, Joshua Pelz, Herb Barrack and Falko Kuester

There are over 40 million amputees globally with more than 185,000 Americans losing their limbs every year. For most of the world, prosthetic devices remain too expensive and…

2749

Abstract

Purpose

There are over 40 million amputees globally with more than 185,000 Americans losing their limbs every year. For most of the world, prosthetic devices remain too expensive and uncomfortable. This paper aims to outline advancements made by a multidisciplinary research group, interested in advancing the restoration of human motion through accessible lower limb prostheses.

Design/methodology/approach

Customization, comfort and functionality are the most important metrics reported by prosthetists and patients. The work of this paper presents the design and manufacturing of a custom made, cost-effective and functional three-dimensional (3D) printed transtibial prosthesis monocoque design. The design of the prosthesis integrates 3D imaging, modelling and optimization techniques coupled with additive manufacturing.

Findings

The successful fabrication of a functional monocoque prosthesis through 3D printing indicates the workflow may be a solution to the worldwide accessibility crisis. The digital workflow developed in this work offers great potential for providing prosthetic devices to rural communities, which lack access to skilled prosthetic physicians. The authors found that using the workflow together with 3D printing, this study can create custom monocoque prostheses (Figure 16). These prostheses are comfortable, functional and properly aligned. In comparison with traditional prosthetic devices, the authors slowered the average cost, weight and time of production by 95%, 55% and 95%, respectively.

Social implications

This novel digital design and manufacturing workflow has the potential to democratize and globally proliferate access to prosthetic devices, which restore the patient’s mobility, quality of life and health. LIMBER’s toolbox can reach places where proper prosthetic and orthotic care is not available. The digital workflow reduces the cost of making custom devices by an order of magnitude, enabling broader reach, faster access and improved comfort. This is particularly important for children who grow quickly and need new devices every few months or years, timely access is both physically and psychologically important.

Originality/value

In this manuscript, the authors show the application of digital design techniques for fabricating prosthetic devices. The proposed workflow implements several advantageous changes and, most importantly, digitally blends the three components of a transtibial prosthesis into a single, 3D printable monocoque device. The development of a novel unibody transtibial device that is properly aligned and adjusted digitally, greatly reduces the number of visits an amputee must make to a clinic to have a certified prosthetist adjust and modify their prosthesis. The authors believe this novel workflow has the potential to ease the worldwide accessibility crisis for prostheses.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 30 August 2023

Chiara Luisa Cantu and Annalisa Tunisini

The research question is how can a company implement a circular innovation in a supply network context? Leveraging the main conceptual and interpretative models of the industrial…

1204

Abstract

Purpose

The research question is how can a company implement a circular innovation in a supply network context? Leveraging the main conceptual and interpretative models of the industrial marketing and purchasing thinking, this study aims to investigate the interplay between the process of circular innovation development and the changes in the structure and dynamics of the supply network in which innovation takes place.

Design/methodology/approach

This research applies a case study design focusing on participant interaction dynamics. The case relates to an industrial company producing an innovative coating solution for compostable packaging. The data used to develop the case study came from multiple sources but primarily from semistructured interviews that cover the implementation of the circular innovation and the configuration of the circular network.

Findings

The dynamics of interconnected relationships can configure a circular network that interconnects business and non business actors through vertical, horizontal and heterogeneous relationships. The network configuration is supported by the new mobilizer actor that facilitates the sharing of circular knowledge within the circular network, together with the sharing of a market orientation and entrepreneurial orientation within the supply network, through the educational learning path.

Originality/value

This paper aims to contribute to a new understanding of how circular innovation can be developed, adopted and diffused. In a network, when circular innovation takes place, the focal issue is not the new product or technology in itself but how such innovation is developed and implemented by and through the reconfiguration of the business and non-business relationships into circular network.

Details

Journal of Business & Industrial Marketing, vol. 38 no. 13
Type: Research Article
ISSN: 0885-8624

Keywords

1 – 10 of 25