Search results

1 – 10 of over 2000
Article
Publication date: 8 May 2018

Xudong Chen and Andrew Chan

This paper aims to investigate the responses of laminated glass under soft body impact, including elastic impact and fracture/fragmentation consideration.

Abstract

Purpose

This paper aims to investigate the responses of laminated glass under soft body impact, including elastic impact and fracture/fragmentation consideration.

Design/methodology/approach

The simulation uses the combined finite-discrete element method (FDEM) which combines finite element mesh into discrete elements, enabling the accurate prediction of contact force and deformation. Material rupture is modelled with a cohesive fracture criterion, evaluating the process from continua to discontinua.

Findings

Responses of laminated glass under soft impact (both elastic and fracture) agree well with known data. Crack initiation time in laminated glass increases with the increase of the outside glass thickness. With the increase of Eprojectile, failure mode is changing from flexural to shear, and damage tends to propagate longitudinally when the contact surface increases. Results show that the FDEM is capable of modelling soft impact behaviour of laminated glass successfully.

Research limitations/implications

The work is done in 2D, and it will not represent fully the 3D mechanisms.

Originality/value

Elastic and fracture behaviour of laminated glass under soft impact is simulated using the 2D FDEM. Limited work has been done on soft impact of laminated glass with FDEM, and special research endeavours are warranted. Benchmark examples and discussions are provided for future research.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 13 June 2023

Xiaogen Liu, Shuang Qi, Detian Wan and Dezhi Zheng

This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.

Abstract

Purpose

This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.

Design/methodology/approach

In order to obtain the dynamic strain response of passenger compartment window glass during high-speed train crossing the tunnel, taking the passenger compartment window glass of the CRH3 high speed train on Wuhan–Guangzhou High Speed Railway as the research object, this study tests the strain dynamic response and maximum principal stress of the high speed train passing through the tunnel entrance and exit, the tunnel and tunnel groups as well as trains meeting in the tunnel at an average speed of 300 km·h-1.

Findings

The results show that while crossing the tunnel, the passenger compartment window glass of high speed train is subjected to the alternating action of positive and negative air pressures, which shows the typical mechanic characteristics of the alternating fatigue stress of positive-negative transient strain. The maximum principal stress of passenger compartment window glass for high speed train caused by tunnel aerodynamic effects does not exceed 5 MPa, and the maximum value occurs at the corresponding time of crossing the tunnel groups. The high speed train window glass bears medium and low strain rates under the action of tunnel aerodynamic effects, while the maximum strain rate occurs at the meeting moment when the window glass meets the train head approaching from the opposite side in the tunnel. The shear modulus of laminated glass PVB film that makes up high speed train window glass is sensitive to the temperature and action time. The dynamically equivalent thickness and stiffness of the laminated glass and the dynamic bearing capacity of the window glass decrease with the increase of the action time under tunnel aerodynamic pressure. Thus, the influence of the loading action time and fatigue under tunnel aerodynamic effects on the glass strength should be considered in the design for the bearing performance of high speed train window glass.

Originality/value

The research results provide data support for the analysis of mechanical characteristics, damage mechanism, strength design and structural optimization of high speed train glass.

Article
Publication date: 4 October 2011

Cynthia Gomes, Nahum Travitzky, Peter Greil, Wilson Acchar, Hansu Birol, Antonio Pedro Novaes de Oliveira and Dachamir Hotza

This paper seeks to detail the fabrication of a glass‐ceramic substrate, based on the LiO2‐ZrO2‐SiO2‐Al2O3 (LZSA) system, by laminated object manufacturing (LOM) using water‐based…

1058

Abstract

Purpose

This paper seeks to detail the fabrication of a glass‐ceramic substrate, based on the LiO2‐ZrO2‐SiO2‐Al2O3 (LZSA) system, by laminated object manufacturing (LOM) using water‐based cast tapes.

Design/methodology/approach

Small amounts of ZrSiO4 were added to control the thermal expansion coefficient (TEC) of the original glass‐ceramic (LZSA5Zr: LZSA+5 wt% ZrSiO4). In order to verify the influence of the amount and nature of crystalline phases on the thermal and dielectric behavior of the material, LZSA and LZSA5Zr laminates were sintered at 700°C for 30 min and crystallized at either 800 or 850°C for 30 min.

Findings

LZSA laminates (sintered and crystallized at 700 and 800°C, respectively) exhibited a relative density of ∼90 percent, a dielectric constant of 8.39, a dielectric loss tangent of 0.031 and TEC of 5.5×10−6 K−1 (25‐550°C). The addition of 5 wt% ZrSiO4 to original LZSA glass‐ceramics led to a nearly constant TEC value of 6×10−6 K−1 throughout the whole temperature interval (25‐800°C). Dielectric properties of LZSA5Zr did not show any remarkable change when compared to original LZSA.

Originality/value

The thermal, mechanical and electrical properties of LZSA glass‐ceramic laminates fabricated by LOM makes them potential candidates for substrate applications.

Details

Rapid Prototyping Journal, vol. 17 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2605

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 1964

A.J. Holland

The construction of windscreen panels for modern aircraft is described and the role of each component in meeting the requirements for pressure strength, bird resistance and…

Abstract

The construction of windscreen panels for modern aircraft is described and the role of each component in meeting the requirements for pressure strength, bird resistance and optical performance is discussed. The influence of the physical properties of the windscreen components on the performance of complete laminated windscreens is discussed and the limitations imposed by these properties indicated. Silicone inter‐layers are beginning to replace polyvinyl butyral inter‐layers in high‐speed aircraft laminated transparencies when the temperatures reached are above the working limit of the conventional interlayers. New types of glass capable of withstanding prolonged exposure to higher temperatures than soda lime silica glass without loss of toughening stress, and also capable of withstanding more severe thermal shock without fracture, have been developed.

Details

Aircraft Engineering and Aerospace Technology, vol. 36 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 2001

Yasuyuki Kimura

A developmental project has been initiated to create a new type of glass fabric, whose fibers are to be uniformly distributed in the laminate so as to comply with the requirement…

Abstract

A developmental project has been initiated to create a new type of glass fabric, whose fibers are to be uniformly distributed in the laminate so as to comply with the requirement of homogeneity. As a result, various types of glass fiber fabrics have successfully woven through the uniquely developed “MS process”, and it has been verified that each of the glass fabrics possesses the most suitable structure to attain uniform distribution in the laminates. The laminates, using the newly developed glass fabrics, have proved that the micro‐diameter drilling, that is laser drilling and mechanical drilling with 0.1mm diameter, can be performed very easily with less drill bit breakage, and produces uniform drill holes. It has also been proved that the laminates with the new glass fabrics reveal improved mechanical properties such as lower CTE, decreased warp and twist and better dimensional stability compared with conventional laminates of glass epoxy. Various styles of new glass fabric cover the wide range of thickness from 100 microns down to 27 microns.

Details

Circuit World, vol. 27 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 March 1997

B. Josey

Examines the use of glass for glazing in buildings, concentrating on the four basic types: ordinary annealed glass; toughened glass, laminated glass and wired glass. Claims that…

744

Abstract

Examines the use of glass for glazing in buildings, concentrating on the four basic types: ordinary annealed glass; toughened glass, laminated glass and wired glass. Claims that, if the limitations of glass are understood, we have a wonderful, versatile, economic and durable material with as yet unexplored potential.

Details

Structural Survey, vol. 15 no. 1
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 September 1995

Charles Crawford

Describes the ways in which commercial buildings can be protectedfrom explosive devices, and a variety of modern methods which are costeffective and successful. Analyses major…

560

Abstract

Describes the ways in which commercial buildings can be protected from explosive devices, and a variety of modern methods which are cost effective and successful. Analyses major threats from terrorists and criminal gangs who target facilities, and lists the four steps of explosive management. Also provides detailed information on the different kinds of glass, doors, walls, floors, etc., that should be installed for a safer building. Finally, outlines mandatory building requirements.

Article
Publication date: 28 December 2021

Costas D. Kalfountzos, George S.E. Bikakis and Efstathios E. Theotokoglou

The purpose of this paper is to study the deterministic elastic buckling behavior of cylindrical fiber–metal laminate panels subjected to uniaxial compressive loading and the…

Abstract

Purpose

The purpose of this paper is to study the deterministic elastic buckling behavior of cylindrical fiber–metal laminate panels subjected to uniaxial compressive loading and the investigation of GLAss fiber-REinforced aluminum laminate (GLARE) panels using probabilistic finite element method (FEM) analysis.

Design/methodology/approach

The FEM in combination with the eigenvalue buckling analysis is used for the construction of buckling coefficient–curvature parameter diagrams of seven fiber–metal laminate grades, three glass-fiber composites and monolithic 2024-T3 aluminum. The influences of uncertainties concerning material properties and laminate dimensions on the buckling load are studied with sensitivity analyses.

Findings

It is found that aluminum has a stronger impact on the buckling behavior of the fiber–metal laminate panels than their constituent uni-directional or woven composites. For the classical simply supported boundary conditions, it is found that there is an approximately linear relation between the buckling coefficient and the curvature parameter when the diagrams are plotted in double logarithmic scale. The probabilistic calculations demonstrate that there is a considerable probability to overestimate the buckling load of GLARE panels with deterministic calculations.

Originality/value

In this study, the deterministic and probabilistic buckling response of fiber metal laminate panels is investigated. It is shown that realistic structural uncertainties could substantially affect the buckling strength of aerospace components.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 January 1995

R. Rikards, A. Chate and A. Korjakin

The present investigation is concerned with the utilisation of thefinite element technique for predicting the natural frequencies and the modaldamping factor (also called the loss…

Abstract

The present investigation is concerned with the utilisation of the finite element technique for predicting the natural frequencies and the modal damping factor (also called the loss factor) of anisotropic fibre‐reinforced composite laminated plates. The simple definition of the modal damping factor is defined as the ratio of the strain energy dissipated per radian of vibration, in the mode of interest, to the total strain energy of the entire laminate at maximum displacement during the same cycle. Results for the vibration and damping analysis of multi‐layered plates obtained by the present methods are compared with the results obtained by other authors and with the results of experiments.

Details

Engineering Computations, vol. 12 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 2000