Search results

1 – 10 of 11
Article
Publication date: 28 November 2023

Wei Li, Yuxin Huang, Leilei Ji, Lingling Ma and Ramesh Agarwal

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Abstract

Purpose

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Design/methodology/approach

This study uses a full-flow field transient calculation method of mixed-flow pump based on a closed-loop model.

Findings

The findings show the hydraulic losses and internal flow characteristics of the piping system during the start-up process.

Research limitations/implications

Large computational cost.

Practical implications

Improve the accuracy of current numerical simulation results in transient process of mixed-flow pump.

Originality/value

Simplify the setting of boundary conditions in the transient calculation.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 September 2023

Nasser Baharlou-Houreh, Navid Masaeli, Ebrahim Afshari and Kazem Mohammadzadeh

This paper aims to investigate the effect of partially blocking the cathode channel with the stair arrangement of obstacles on the performance of a proton exchange membrane fuel…

Abstract

Purpose

This paper aims to investigate the effect of partially blocking the cathode channel with the stair arrangement of obstacles on the performance of a proton exchange membrane fuel cell.

Design/methodology/approach

A numerical study is conducted by developing a three-dimensional computational fluid dynamics model.

Findings

As the angle of the stair arrangement increases, the performance of the fuel cell is reduced and the pressure drop is decreased. The use of four stair obstacles with an angle of 0.17° leads to higher power density and a lower pressure drop compared to the case with three rectangular obstacles of the same size and maximum height. The use of four stair obstacles with an angle of 0.34° results in higher power density and lower pressure drop compared to the case with two rectangular obstacles of the same size and maximum height.

Originality/value

Using the stair arrangement of obstacles as an innovation of the present work, in addition to improving the fuel cell’s performance, creates a lower pressure drop than the simple arrangement of obstacles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 September 2023

Nurul Amira Zainal, Najiyah Safwa Khashi'ie, Iskandar Waini, Abdul Rahman Mohd Kasim, Roslinda Nazar and Ioan Pop

The evaluation of high thermal efficiency has actively highlighted the unique behaviour of hybrid nanofluid. Thus, the purpose of this paper is to emphasize the hybrid nanofluid’s…

Abstract

Purpose

The evaluation of high thermal efficiency has actively highlighted the unique behaviour of hybrid nanofluid. Thus, the purpose of this paper is to emphasize the hybrid nanofluid’s stagnation point in three-dimensional flow with magnetic field.

Design/methodology/approach

The defined ordinary differential equations systems are addressed using the bvp4c solver.

Findings

The results indicate that using dual solutions is possible as long as the physical parameters remain within their specified ranges. Hybrid nanofluid flow has been recognised for its superior heat transfer capabilities in comparison to both viscous flow and nanofluid flow. Furthermore, it has been demonstrated in the current study that augmenting the volume concentration of nanoparticles leads to a corresponding enhancement in the rate of heat transfer. When the velocity gradients ratio is augmented, there is a corresponding reduction in the thermal performance. The separation value grows as the magnetic parameter rises, which signifies the expansion of the boundary layer.

Originality/value

The originality of the paper highlights the general mathematical hybrid model of the three-dimensional problem with the magnetohydrodynamics (MHD) effect in the stagnation point flow. The comprehensive examination of the suggested model has not yet been thoroughly addressed in prior research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 November 2023

Shuai Yang, Junxing Hou, Xiaodong An and Shuanghui Xi

The floating ring generates elastic deformation as the film pressure for high-speed floating ring bearings (FRBs). The purpose of this study is to investigate the influence of…

Abstract

Purpose

The floating ring generates elastic deformation as the film pressure for high-speed floating ring bearings (FRBs). The purpose of this study is to investigate the influence of ring elastic deformation on the performance of a hydrodynamic/hydrostatic FRB, including floating ring equilibrium and minimum film thickness.

Design/methodology/approach

The finite element method and finite difference method are used to solve thermohydrodynamic (THD) lubrication models, including the Reynolds equation, energy equation and temperature–viscosity equation. The deformation matrix method is applied to solve the elastic deformation equation, and then the deformation distribution, floating ring equilibrium and minimum film thickness are investigated. The maximum pressure is compared with the published article to verify the mathematical models.

Findings

The deformation value increases with the growth of shaft speed; owing to elastic deformation on the film reaction force and friction moment, the ring achieves equilibrium at a new position, and the inner eccentricity increases while the ring-shaft speed ratio declines. The minimum film thickness declines with the growth of inlet temperature, and the outer film tends to rupture considering elastic deformation at a higher temperature.

Originality/value

The floating ring elastic deformation is coupled with the THD lubrication equations to study ring deformation on the hydrodynamic/hydrostatic FRB lubrication mechanism. The elastic deformation of floating ring should be considered to improve analysis accuracy for FRBs.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0139/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 June 2023

Penggao Zhang, Fei Feng, Xiu Feng and Long Wei

Magnetic fluid has excellent function used as lubricants in bearings and mechanical seals, and the purpose of this study is to investigate the sealing performance in a spiral…

Abstract

Purpose

Magnetic fluid has excellent function used as lubricants in bearings and mechanical seals, and the purpose of this study is to investigate the sealing performance in a spiral groove mechanical seal lubricated by magnetic fluid.

Design/methodology/approach

The sealing characteristic parameters of the lubricating film between the end faces of two sealing rings were calculated based on the Muijderman narrow groove theory for a spiral groove mechanical seal lubricated by magnetic fluid. The film thickness was determined according to the balanced forces on the rotating ring, and the effects of operating conditions, intensity of the magnetic field and diameter of nanoparticles on the sealing characteristics were investigated.

Findings

It has been found that the intensity of magnetic field has a great effect on the viscosity of magnetic fluid, film thickness and friction torque while has a little effect on the mass flux of magnetic fluid. The film thickness, mass flux of magnetic fluid and friction torque increase with the increasing volume fraction, rotating speed and diameter of magnetic nanoparticles in magnetic fluid. The mass flux of magnetic fluid decrease with the increasing closing force, and the friction torque decreases with the increase of media pressure.

Originality/value

The change of intensity of magnetic field can affect the viscosity of magnetic fluid and then changes the sealing performance in a mechanical seal lubricated by magnetic fluid. To reduce the mass flux of magnetic fluid and friction torque, the volume fraction, diameter of solid magnetic particles and film thickness should be 5%–7%, 8–10 nm and 2–9.3 µm, respectively.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2023-0032/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 April 2023

Wenchao Duan, Yiqiang Yang, Wenhong Liu, Zhiqiang Zhang and Jianzhong Cui

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab…

201

Abstract

Purpose

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab under no magnetic field (NMF), harmonic magnetic field (HMF), pulsed magnetic field (PMF) and two types of out-of-phase pulsed magnetic field (OPMF).

Design/methodology/approach

A 3-D multiphysical coupling mathematical model is used to evaluate the corresponding physical fields. The coupling issue is addressed using the method of separating step and result inheritance.

Findings

The results suggest that the solute deficiency tends to occur in the central part, while the solute-enriched area appears near the fillet in the molten and solidified regions. Applying magnetic field could greatly homogenize the solute field in the two-phase region. The variance of relative segregation level in the solidified cross-section under NMF is 38.1%, while it is 21.9%, 18.6%, 16.4% and 12.4% under OPMF2 (the current phase in the upper coil is ahead of the lower coil), HMF, PMF and OPMF1 (the current phase in the upper coil lags behind the lower coil), respectively, indicating that OPMF1 is more effective to reduce the macrosegregation level.

Originality/value

There are few reports on the solute segregation degree in rectangle slab under magnetic field, especially for magnesium alloy slab. This paper can act a reference to make clear the solute transport behavior and help reduce the macrosegregation level during DC casting.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2023

Joby John and Ramendra Thakur

To reconceptualize the organizational environment in a comprehensive manner, it is important to specify not just the velocity but also other aspects of turbulent environments…

Abstract

Purpose

To reconceptualize the organizational environment in a comprehensive manner, it is important to specify not just the velocity but also other aspects of turbulent environments. Concurrently, the purpose of this paper is to also propose that organizational adaptability and, particularly, the speed of adaptations are critical to moderate the impact of turbulence in the environment on organizational performance.

Design/methodology/approach

This paper uses a conceptual methodology to fully specify turbulent environments and commensurate managerial response appropriate for such environments. Based on a perspective borrowed from the field of fluid dynamics used to specify the phenomenon of turbulence, the authors develop a conceptual model with research propositions. Four dimensions that describe turbulence in fluid flow when applied metaphorically offer a comprehensive view of the organizational environment.

Findings

An extreme, unanticipated, sudden onslaught resulting in a prolonged disrupted environment such as during the recent coronavirus crisis is best characterized as having caused turbulent environmental conditions. Management theories have addressed disruptions as high-velocity environments in the context of rapid changes in information technology. With a broadened conceptualization of the organizational environment to better capture extreme disruptions, the authors provide a comprehensive model appropriate for turbulent environmental conditions and offer research directions for scholarly pursuit.

Originality/value

This paper provides a new perspective from the physical sciences to better conceptualize organizational environments during extreme disruptions such as in turbulent environmental conditions.

Details

International Journal of Organizational Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1934-8835

Keywords

Article
Publication date: 14 June 2023

Manikandamaharaj T.S. and Jaffar Ali B.M.

Effective performance of a direct ethanol fuel cell (FC) stack depends on the satisfactory operation of its individual cells where it is always challenging to manage the…

Abstract

Purpose

Effective performance of a direct ethanol fuel cell (FC) stack depends on the satisfactory operation of its individual cells where it is always challenging to manage the temperature gradient, water flow and distribution of reactants. In that, the design of the bipolar fuel flow path plate plays a vital role in achieving the aforementioned parameters. Further, the bipolar plates contribute 80% of the weight and 30%–40% of its total cost. Aim of this study is to enhance the efficiency of fuel to energy conversion and to minimize the overall cost of production.

Design/methodology/approach

The authors have specifically designed, simulated and fabricated a standard 2.5 × 2.5 cm2 active area proton exchange membrane (PEM) FC flow path plate to study the performance by varying the flow fields in a single ladder, double ladder and interdigitated and varying channel geometries, namely, half curve, triangle and rectangle.

Findings

Using the 3D PEMFC model and visualizing the physical and electrochemical processes occurring during the operation of the FCs resulted in a better-performing flow path plate design. It is fabricated by using additive manufacturing technology. In addition, the assembly of the full cell with the designed flow path plate shows about an 11.44% reduction in total weight, which has a significant bearing on its total cost as well as specific energy density in the stack cell.

Originality/value

Simultaneous optimization of multiple flow path parameters being carried out for better performance is the hallmark of this study which resulted in enhanced energy density and reduced cost of device production.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 August 2023

Bowen Fan, Keke Yuan, Wei Chen, Shemiao Qi, Yi Liu and Heng Liu

The purpose of this study is to present a numerical model for scratched tilting-pad bearings (STPBs) with nonuniform grids. In addition, the model is used to reveal the effects of…

Abstract

Purpose

The purpose of this study is to present a numerical model for scratched tilting-pad bearings (STPBs) with nonuniform grids. In addition, the model is used to reveal the effects of the structural parameters of bearings on the dynamic characteristics of STPBs under impact loading.

Design/methodology/approach

By combining the Reynolds equation, the flow balance equation and the assumption of adiabatic bearings and shafts, a thermo-hydrodynamic model with nonuniform grids of scratched journal bearings was built. Describing the motion of the shaft using the Euler method and introducing the pad-tilting-angle modification equation, a dynamic model of STPBs was established.

Findings

The occurrence of scratches in tilting-pad bearings yields great sensitivity to impact loading. Less width-to-diameter ratio and larger clearance ratio reduce the minimum film thickness and enlarge the maximum film pressure, which may lead to bearing collision or abrasion. Moreover, STPBs with larger clearance ratios take longer to recover from impact loading.

Originality/value

This work is original and a valuable reference for the analysis of the dynamic characteristics of STPBs. The effects of other factors on the dynamic characteristics of STPBs can be further investigated based on this model.

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 November 2022

Jinxia Jiang, Haojie Zhao and Yan Zhang

This study aims to investigate the two-dimensional magnetohydrodynamic flow and heat transfer of a fractional Maxwell nanofluid between inclined cylinders with variable thickness…

Abstract

Purpose

This study aims to investigate the two-dimensional magnetohydrodynamic flow and heat transfer of a fractional Maxwell nanofluid between inclined cylinders with variable thickness. Considering the cylindrical coordinate system, the constitutive relation of the fractional viscoelastic fluid and the fractional dual-phase-lag (DPL) heat conduction model, the boundary layer governing equations are first formulated and derived.

Design/methodology/approach

The newly developed finite difference scheme combined with the L1 algorithm is used to numerically solve nonlinear fractional differential equations. Furthermore, the effectiveness of the algorithm is verified by a numerical example.

Findings

Based on numerical analysis, the effects of parameters on velocity and temperature are revealed. Specifically, the velocity decreases with the increase of the fractional derivative parameter α owing to memory characteristics. The temperature increase with the increase of fractional derivative parameter ß due to a decrease in thermal resistance. From a physical perspective, the phase lag of the heat flux vector and temperature gradients τq and τT exhibit opposite trends to the temperature. The ratio τT/τq plays an important role in controlling different heat conduction behaviors. Increasing the inclination angle θ, the types and volume fractions of nanoparticles Φ can increase velocity and temperature, respectively.

Originality/value

Fractional Maxwell nanofluid flows from a fixed-thickness pipe to an inclined variable-thickness pipe, and the fractional DPL heat conduction model based on materials is considered, which provides a basis for the safe and efficient transportation of high-viscosity and condensable fluids in industrial production.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 11