Search results

1 – 4 of 4
Article
Publication date: 2 February 2022

Munir Ahmed, Muhammad Shakaib and Mubashir Ali Siddiqui

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different…

Abstract

Purpose

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different locations of the combustion chamber. This study aims to quantify NOx formed inside the combustion chamber using two fuels, a conventional diesel (n-heptane) and a biodiesel (methyl oleate).

Design/methodology/approach

This research uses a computational fluid dynamics simulation of chemically reacting fluid flow to quantify and compare oxides of nitrogen (NOx) in a compression ignition (CI) engine. The study expends species transport model of ANSYS FLUENT. The simulation model has provided the temperature profile inside the combustion chamber, which is subsequently used to calculate NOx using the NOx model. The simulation uses a single component hydrocarbon and oxygenated hydrocarbon to represent fuels; for instance, it uses n-heptane (C7H16) for diesel and methyl-oleate (C19H36O2) for biodiesel. A stoichiometric air–fuel mixture is used for both fuels. The simulation runs a single cylinder CI engine of 650 cm3 swept volume with inlet and exhaust valves closed.

Findings

The pattern for variation of velocity, an important flow parameter, which affects combustion and subsequently oxides of nitrogen (NOx) formation at different piston locations, is similar for the two fuels. The variations of in-cylinder temperature and NOx formation with crank angles have similar patterns for the fuels, diesel and biodiesel. However, the numerical values of in-cylinder temperature and mass fraction of NOx are different. The volume averaged static peak temperatures are 1,013 K in case of diesel and 1,121 K in case of biodiesel, while the mass averaged mass fractions of NOx are 15 ppm for diesel and 141 ppm for biodiesel. The temperature rise after combustion is more in case of biodiesel, which augments the oxides of nitrogen formation. A new parameter, relative mass fraction of NOx, yields 28% lower value for biodiesel than for diesel.

Originality/value

This work uses a new concept of simulating simple chemical reacting system model to quantify oxides of NOx using single component fuels. Simplification has captured required fluid flow data to analyse NOx emission from CI engine while reducing computational time and expensive experimental tests.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

36

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 April 2024

Rahul Soni, Madhvi Sharma, Ponappa K. and Puneet Tandon

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of…

Abstract

Purpose

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of this paper is to harness SCOBY’s potential to create cost-effective and nourishing food options using the innovative technique of 3D printing.

Design/methodology/approach

This work presents a comparative analysis of the printability of SCOBY with blends of wheat flour, with a focus on the optimization of process variables such as printing composition, nozzle height, nozzle diameter, printing speed, extrusion motor speed and extrusion rate. Extensive research was carried out to explore the diverse physical, mechanical and rheological properties of food ink.

Findings

Among the ratios tested, SCOBY, with SCOBY:wheat flour ratio at 1:0.33 exhibited the highest precision and layer definition when 3D printed at 50 and 60 mm/s printing speeds, 180 rpm motor speed and 0.8 mm nozzle with a 0.005 cm3/s extrusion rate, with minimum alteration in colour.

Originality/value

Food layered manufacturing (FLM) is a novel concept that uses a specialized printer to fabricate edible objects by layering edible materials, such as chocolate, confectionaries and pureed fruits and vegetables. FLM is a disruptive technology that enables the creation of personalized and texture-tailored foods, incorporating desired nutritional values and food quality, using a variety of ingredients and additions. This research highlights the potential of SCOBY as a viable material for 3D food printing applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 April 2024

Cédric Gervais Njingang Ketchate, Oluwole Daniel Makinde, Pascalin Tiam Kapen and Didier Fokwa

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Abstract

Purpose

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Design/methodology/approach

The treated single-phase nanofluid is a suspension consisting of water as the working fluid and alumina as a nanoparticle. The anisotropy of the porous medium and the effects of the inclination of the magnetic field are highlighted. The effects of viscous dissipation and thermal radiation are incorporated into the energy equation. The eigenvalue equation system resulting from the stability analysis is processed numerically by the spectral collocation method.

Findings

Analysis of the results in terms of growth rate reveals that increasing the volume fraction of nanoparticles increases the critical Reynolds number. Parameters such as the mechanical anisotropy parameter and Richardson number have a destabilizing effect. The Hartmann number, permeability parameter, magnetic field inclination, Prandtl number, wave number and thermal radiation parameter showed a stabilizing effect. The Eckert number has a negligible effect on the growth rate of the disturbances.

Originality/value

Linear stability analysis of Magnetohydrodynamics (MHD) mixed convection flow of a radiating nanofluid in porous channel in presence of viscous dissipation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 4 of 4