Search results

1 – 10 of 44
Article
Publication date: 7 August 2019

Zhihua Niu, Zhimin Li, Sun Jin and Tao Liu

This paper aims to carry out assembly variation analysis for mechanisms with compliant joints by considering deformations induced by manufactured deviations. Such an analysis…

Abstract

Purpose

This paper aims to carry out assembly variation analysis for mechanisms with compliant joints by considering deformations induced by manufactured deviations. Such an analysis procedure extends the application area of direct linearization method (DLM) to compliant mechanisms and also illustrates the dimensional interaction within multi-loop compliant structures.

Design/methodology/approach

By applying DLM to both geometrical equations and Lagrange’s equations of the second kind, an analytical deviation modeling method for mechanisms with compliant joints are proposed and further used for statistical assembly variation analysis. The precision of this method is verified by comparing it with finite element simulation and traditional DLM.

Findings

A new modeling method is proposed to represent kinematic relationships between joint deformations and parts/components deviations. Based on a case evaluation, the computational efficiency is improved greatly while the modeling accuracy is maintained at more than 94% rate comparing with the benchmark finite element simulation.

Originality/value

The Equilibrium Equations of Incremental Forces derived from Lagrange’s equations are proposed to quantitatively represent the relationships between manufactured deviations and assembly deformations. The present method extends the application area of DLM to compliant structures, such as automobile suspension systems and some Micro-Electro-Mechanical-Systems.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 October 2011

Abdul‐Majid Wazwaz and Randolph Rach

The purpose of this paper is to provide a comparison of the Adomian decomposition method (ADM) with the variational iteration method (VIM) for solving the Lane‐Emden equations of

583

Abstract

Purpose

The purpose of this paper is to provide a comparison of the Adomian decomposition method (ADM) with the variational iteration method (VIM) for solving the Lane‐Emden equations of the first and second kinds.

Design/methodology/approach

The paper examines the theoretical framework of the Adomian decomposition method and compares it with the variational iteration method. The paper seeks to determine the relative merits and computational benefits of both the Adomian decomposition method and the variational iteration method in the context of the important physical models of the Lane‐Emden equations of the first and second kinds.

Findings

The Adomian decomposition method is shown to readily solve the Lane‐Emden equations of both the first and second kinds for all positive real values of the system coefficient α and for all positive real values of the nonlinear exponent m. The decomposition series solution of these nonlinear differential equations requires the calculation of the Adomian polynomials appropriate to the particular system nonlinearity. The paper shows that the variational iteration method works effectively to solve the Lane‐Emden equation of the first kind for system coefficient values α=1, 2, 3, 4 but only for positive integer values of the nonlinear exponent m. The successive approximations of the solution of these nonlinear differential equations require the determination of the appropriate Lagrange multipliers, which are established in this paper. These two methodologies overcome the singular behavior at the origin x=0. The paper shows that the variational iteration method is impractical for solving either the Lane‐Emden equation of the first kind for non‐integer values of the system exponent m or the Lane‐Emden equations of the second kind. Indeed the Adomian decomposition method is shown to solve even the generalized Lane‐Emden equation for any analytic nonlinearity and all positive values of the system coefficient α in a practical and straightforward manner. The conclusions are supported by several numerical examples.

Originality/value

This paper presents an accurate comparison of the Adomian decomposition method with the variational iteration method for solving the Lane‐Emden equations of the first and second kinds. The paper presents a new solution algorithm for the generalized Lane‐Emden equation for any analytic system nonlinearity and for any model geometry as characterized by all possible positive real values of the system coefficient α.

Article
Publication date: 6 August 2020

Niu-Jing Ma, Li-Xiong Gu, Long Piao and Xing-Zhi Zhang

Stiffened plates have been widely used in civil, marine, aerospace engineering. As a kind of thin-walled structure operating in complex environment, stiffened plates mostly…

Abstract

Purpose

Stiffened plates have been widely used in civil, marine, aerospace engineering. As a kind of thin-walled structure operating in complex environment, stiffened plates mostly undergo a variety of dynamic loads, which may sometimes result in large-amplitude vibration. Additionally, initial stresses and geometric imperfections are widespread in this type of structure. Furthermore, it is universally known that initial stresses and geometric imperfections may affect mechanical behavior of structures severely, particularly in dynamic analysis. Thus, the purpose of this paper is to study the stress variation rule of a stiffened plate during large-amplitude vibration considering initial stresses and geometric imperfections.

Design/methodology/approach

The initial stresses are represented in the form of initial bending moments applying to the stiffened plate, while the initial geometric imperfections are considered by means of trigonometric series, and they are assumed existing in the plate along the z-direction exclusively. Then, the dynamic equilibrium equations of the stiffened plate are established using Lagrange’s equation as well as aforementioned conditions. The nonlinear differential equations of motion are simplified as a two-degree-of-freedom system by considering 1:2 and 1:3 internal resonances, respectively, and the multiscale method is applied to solve the equations.

Findings

The influence of initial stresses on the plate, stresses during internal resonance is remarkable, while that is moderate for initial geometric imperfections. (Upon considering the existence of initial stresses or geometric imperfections, the stresses of motivated modes are less than the primary mode for both and internal resonances). The influence of bidirectional initial stresses on the plate’s stresses during internal resonance is more remarkable than that of unidirectional initial stresses. The coupled vibration in 1%3A2 internal resonance is fiercer than that in internal resonance.

Originality/value

Stiffened plates are widely used in engineering structures. However, as a type of thin-walled structure, stiffened plates vibrate with large amplitude in most cases owning to their complicated operation circumstance. In addition, stiffened plates usually contain initial stresses and geometric imperfections, which may result in the variation of their mechanical behavior, especially dynamical behavior. Based on the above consideration, this paper studies the nonlinear dynamical behavior of stiffened plates with initial stresses and geometrical imperfections under different internal resonances, which is the originality of this work. Furthermore, the research findings can provide references for engineering design and application.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 February 2017

Michael V. Vartanov, Leonarda V. Bojkova and Inna N. Zinina

The purpose of this paper is to define the conditions for a failsafe coupling of parts when using adaptation and low-frequency vibrations. A model enables us to determine the

Abstract

Purpose

The purpose of this paper is to define the conditions for a failsafe coupling of parts when using adaptation and low-frequency vibrations. A model enables us to determine the reaction at the contact points of parts and time-based contact conditions changes. Therefore, the conditions of jamming parts can be defined in the process of conjugation.

Design/methodology/approach

A mathematical model describing the trajectory of the part mass center in robotic assembly is created. An experimental equipment is also presented in the paper. Convergence of theoretical and experimental results that characterize the reliability of processes is estimated.

Findings

The mathematical model of the connection process dynamics is found in the form of Lagrange’s equations of the second kind.

Originality/value

Applying low-frequency vibration and the adaptive gripper is proposed to extend technological capabilities of robotic assembly.

Details

Assembly Automation, vol. 37 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 10 May 2019

Kumar Kaushik Ranjan, Sandeep Kumar, Amit Tyagi and Ambuj Sharma

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative…

Abstract

Purpose

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative method are necessary to obtain a high-accuracy solution. The purpose of this paper is to provide an optimal adaptive scheme based on second-generation finite element wavelets for the solution of non-linear variational inequality of the contact problem.

Design/methodology/approach

To generate an elementary multi-resolution mesh, the authors used hierarchical bases (HB) composed of Lagrange finite element interpolation functions. These HB functions are customized using second-generation wavelet techniques for a fast convergence rate. At each step of the algorithm, the active set method along with mesh adaptation is used for solving the constrained minimization problem of contact case. Wavelet coefficients-based error indicators are used, and computation is focused on mesh zones with a high error indication. The authors take advantage of the wavelet transform to develop a parameter-free adaptive scheme to generate an appropriate and optimal mesh.

Findings

Adaptive wavelet Galerkin scheme (AWGS), a newly developed method for multi-scale mesh adaptivity in this work, is a combination of the second-generation wavelet transform and finite element method and significantly improves the accuracy of the results without approximating an additional problem of error estimation equations. A comparative study is performed taking a solution on a highly refined mesh and results are generated using AWGS.

Practical implications

The proposed adaptive technique can be utilized in the simulation of mechanical and biomechanical structures where multiple bodies come into contact with each other. The algorithm of the method is easy to implement and found to be successful in producing a sufficiently accurate solution with relatively less number of mesh nodes.

Originality/value

Although many error estimation techniques have been developed over the past several years to solve contact problems adaptively, because of boundary non-linearity development, a reliable error estimator needs further investigation. The present study attempts to resolve this problem without having to recompute the entire solution on a new mesh.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 March 2019

Vinicius Piro Barragam, Andre Fenili and Ijar Milagre da Fonseca

The purpose of this paper is the dynamic analysis of the coupled rotation and vibration motion of a system containing a central rigid body to which is attached a flexible beam.

Abstract

Purpose

The purpose of this paper is the dynamic analysis of the coupled rotation and vibration motion of a system containing a central rigid body to which is attached a flexible beam.

Design/methodology/approach

The methodology includes the Lagrange’s formulation by using the extended Hamilton’s Principle in conjunction with the assumed modes method to describe the system of equations by ordinary differential equations. The first unconstrained mode of vibration was considered as the solution for the transversal displacement. Such mode emerges as the eigenvalue problem solution associated to the dynamics of the system. The control strategy adopted is a nonlinear analogy of the linear quadratic regulator problem as the Riccati equation is solved at every integration step during the numerical solutions. This strategy is known as state-dependent Riccati equation.

Findings

By means of computational simulations, it was found the relation between controlled motion and inertia ratio.

Research limitations/implications

This work is limited to planar case and fixed hub.

Practical implications

Practical implications of this work realize the design of lighter yet dexterous structures.

Originality/value

The contribution of this paper is the position and vibration control of a flexible beam accounting for nonlinearity effects and the fact that the structure to where it is clamped has a comparable inertia.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 April 1954

E.G. Broadbent

IN Part I wc saw how structural flexibility could introduce aerodynamic forces which might eventually lead to instability, or to the complete nullification of a desired…

Abstract

IN Part I wc saw how structural flexibility could introduce aerodynamic forces which might eventually lead to instability, or to the complete nullification of a desired aerodynamic effect. The phenomenon of flutter presents another problem in stability, but in this case an oscillatory instability is threatened. It must be realized at the outset that flutter is no mere resonance phenomenon such as the bad vibrations a motor‐car may exhibit at a particular engine speed. Flutter is a vibration in which energy is extracted from the airstrcam to help build up the amplitude, and a catastrophic failure can easily occur within a second of the start of the flutter.

Details

Aircraft Engineering and Aerospace Technology, vol. 26 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 1999

Percy Hammond

There are two conflicting views about electromagnetic phenomena. The first is based on the action between stationary and moving particles of electric charge and the second on…

Abstract

There are two conflicting views about electromagnetic phenomena. The first is based on the action between stationary and moving particles of electric charge and the second on energy distributions in electric and magnetic fields. The difference between these approaches is seen most clearly in the roles assigned to the potentials. According to the particle view the potentials convey the force from one particle to another, whereas in the field approach the potentials are system parameters related to the field energy. The article compares the two views and concludes that the particle view faces impossible difficulties because it ascribes local significance to quantities which are unobservable and conflicts with the quantum‐mechanical understanding of charge as a statistical distribution.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 May 2020

S. Veluchamy and L.R. Karlmarx

Biometric identification system has become emerging research field because of its wide applications in the fields of security. This study (multimodal system) aims to find more…

Abstract

Purpose

Biometric identification system has become emerging research field because of its wide applications in the fields of security. This study (multimodal system) aims to find more applications than the unimodal system because of their high user acceptance value, better recognition accuracy and low-cost sensors. The biometric identification using the finger knuckle and the palmprint finds more application than other features because of its unique features.

Design/methodology/approach

The proposed model performs the user authentication through the extracted features from both the palmprint and the finger knuckle images. The two major processes in the proposed system are feature extraction and classification. The proposed model extracts the features from the palmprint and the finger knuckle with the proposed HE-Co-HOG model after the pre-processing. The proposed HE-Co-HOG model finds the Palmprint HE-Co-HOG vector and the finger knuckle HE-Co-HOG vector. These features from both the palmprint and the finger knuckle are combined with the optimal weight score from the fractional firefly (FFF) algorithm. The layered k-SVM classifier classifies each person's identity from the fused vector.

Findings

Two standard data sets with the palmprint and the finger knuckle images were used for the simulation. The simulation results were analyzed in two ways. In the first method, the bin sizes of the HE-Co-HOG vector were varied for the various training of the data set. In the second method, the performance of the proposed model was compared with the existing models for the different training size of the data set. From the simulation results, the proposed model has achieved a maximum accuracy of 0.95 and the lowest false acceptance rate and false rejection rate with a value of 0.1.

Originality/value

In this paper, the multimodal biometric recognition system based on the proposed HE-Co-HOG with the k-SVM and the FFF is developed. The proposed model uses the palmprint and the finger knuckle images as the biometrics. The development of the proposed HE-Co-HOG vector is done by modifying the Co-HOG with the holoentropy weights.

Details

Sensor Review, vol. 40 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 June 2008

Adha Imam Cahyadi and Yoshio Yamamoto

The purpose of this paper is to present a design and verification through experiments of teleoperation of the 3 degrees‐of‐freedom micromanipulation system (MMS), in laboratory…

Abstract

Purpose

The purpose of this paper is to present a design and verification through experiments of teleoperation of the 3 degrees‐of‐freedom micromanipulation system (MMS), in laboratory conditions.

Design/methodology/approach

The MMS is constructed from piezoelectric actuators sited in a flexure hinge mechanism. The nonlinearity, especially hysteresis, due to a voltage steering scheme is compensated for, via a second‐order Dahl friction model. A simple mechanical model is then constructed to capture the behavior of the MMS. Redundant force feedback sensors are applied to the MMS in order to achieve flexible operation via the so‐called fault‐tolerancing mechanism. Finally, a teleoperation scheme based on passivity formalism is proposed to achieve a stable teleoperation system.

Findings

The hysteresis curve due to voltage steering can be minimized. The fault‐tolerancing concept using redundant sensors for comfortable use of the MMS has been successfully performed. The teleoperated MMS via a commercially available PHANToM® has been conducted under ineligible telecommunication channel delay.

Originality/value

The details of design, modelling and experimentations of the teleoperation of the MMS should promote the applicability of similar systems in the future.

Details

Industrial Robot: An International Journal, vol. 35 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 44