Search results

1 – 10 of 117
Open Access
Article
Publication date: 28 December 2020

Qinjie Yang, Guozhe Shen, Chao Liu, Zheng Wang, Kai Zheng and Rencheng Zheng

Steer-by-wire (SBW) system mainly relies on sensors, controllers and motors to replace the traditionally mechanical transmission mechanism to realize steering functions. However…

1260

Abstract

Purpose

Steer-by-wire (SBW) system mainly relies on sensors, controllers and motors to replace the traditionally mechanical transmission mechanism to realize steering functions. However, the sensors in the SBW system are particularly vulnerable to external influences, which can cause systemic faults, leading to poor steering performance and even system instability. Therefore, this paper aims to adopt a fault-tolerant control method to solve the safety problem of the SBW system caused by sensors failure.

Design/methodology/approach

This paper proposes an active fault-tolerant control framework to deal with sensors failure in the SBW system by hierarchically introducing fault observer, fault estimator, fault reconstructor. Firstly, the fault observer is used to obtain the observation output of the SBW system and then obtain the residual between the observation output and the SBW system output. And then judge whether the SBW system fails according to the residual. Secondly, dependent on the residual obtained by the fault observer, a fault estimator is designed using bounded real lemma and regional pole configuration to estimate the amplitude and time-varying characteristics of the faulty sensor. Eventually, a fault reconstructor is designed based on the estimation value of sensors fault obtained by the fault estimator and SBW system output to tolerate the faulty sensor.

Findings

The numerical analysis shows that the fault observer can be rapidly activated to detect the fault while the sensors fault occurs. Moreover, the estimation accuracy of the fault estimator can reach to 98%, and the fault reconstructor can make the faulty SBW system to retain the steering characteristics, comparing to those of the fault-free SBW system. In addition, it was verified for the feasibility and effectiveness of the proposed control framework.

Research limitations/implications

As the SBW fault diagnosis and fault-tolerant control in this paper only carry out numerical simulation research on sensors faults in matrix and laboratory/Simulink, the subsequent hardware in the loop test is needed for further verification.

Originality/value

Aiming at the SBW system with parameter perturbation and sensors failure, this paper proposes an active fault-tolerant control framework, which integrates fault observer, fault estimator and fault reconstructor so that the steering performance of SBW system with sensors faults is basically consistent with that of the fault-free SBW system.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 7 April 2015

Yujun Cao, Xin Li, Zhixiong Zhang and Jianzhong Shang

This paper aims to clarify the predicting and compensating method of aeroplane assembly. It proposes modeling the process of assembly. The paper aims to solve the precision…

1450

Abstract

Purpose

This paper aims to clarify the predicting and compensating method of aeroplane assembly. It proposes modeling the process of assembly. The paper aims to solve the precision assembly of aeroplane, which includes predicting the assembly variation and compensating the assembly errors.

Design/methodology/approach

The paper opted for an exploratory study using the state space theory and small displacement torsor theory. The assembly variation propagation model is established. The experiment data are obtained by a real small aeroplane assembly process.

Findings

The paper provides the predicting and compensating method for aeroplane assembly accuracy.

Originality/value

This paper fulfils an identified need to study how the assembly variation propagates in the assembly process.

Details

Assembly Automation, vol. 35 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 2 February 2023

Cheng Wang, Haibo Xie and Huayong Yang

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor…

Abstract

Purpose

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor path-following accuracy for the path planning of hyper-redundant snake-like manipulator.

Design/methodology/approach

When a desired path is given, new configuration of the snake-like manipulator is obtained through a geometrical approach, then the joints are repositioned through iterations until all the rotation angles satisfy the imposed joint limits. Finally, a new arrangement is obtained through the analytic solution of the inverse kinematics of hyper-redundant manipulator. Finally, simulations and experiments are carried out to analyze the performance of the proposed path-following method.

Findings

Simulation results show that the average computation time is 0.1 ms per step for a hyper-redundant manipulator with 12 degrees of freedom, and the deviation in tip position can be kept below 0.02 mm. Experiments show that all the rotation angles are within joint limits.

Research limitations/implications

Currently , the manipulator is working in open-loop, the elasticity of the driving cable will cause positioning error. In future, close-loop control based on real-time attitude detection will be used in in combination with the path-following method to achieve high-precision trajectory tracking.

Originality/value

Through a series of iterative processes, the proposed method can make the manipulator approach the desired path as much as possible within the joint constraints with high precision and less computation time.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 7 June 2021

Changyang Li, Huapeng Wu, Harri Eskelinen and Haibiao Ji

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in…

Abstract

Purpose

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in fusion reactor. Detailed mechanical design of the robot is presented and both the kinematic and dynamic behaviors are studied.

Design/methodology/approach

First, the model of the mobile parallel robot was created in computer-aided design (CAD) software, then the simulation and optimization of the robot were completed to meet the design requirements. Then the robot was manufactured and assembled. Finally, the machining and tungsten inert gas (TIG) welding tests were performed for validation.

Findings

Currently, the implementation of the robot system has been successfully carried out in the laboratory. The excellent performance has indicated that the robot’s mechanical and software designs are suitable for the given tasks. The quality and accuracy of welding and machining has reached the requirements.

Originality/value

This mobile parallel industrial robot is particularly used in fusion reactor. Furthermore, the structure of the mobile parallel robot can be optimized for different applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 24 September 2019

Aboubakar Seddik Bouchikhi

The purpose of this paper is to introduce a numerical investigation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double…

1096

Abstract

Purpose

The purpose of this paper is to introduce a numerical investigation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) functionally graded material (FGM) plate subjected to tensile mechanical load.

Design/methodology/approach

For this purpose the variations of the material properties are applied at the integration points and at the nodes by implementing a subroutine USDFLD in the ABAQUS software. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is demonstrated. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is examined; also the effect of different parameters for double notch FGM plate is investigated as well as the effect of band of FGM within the ceramic plate to reduce J-integral.

Findings

According to the numerical analysis, all parameters above played an important role in determining the J-integral.

Originality/value

The present study consists in investigating the simulation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) FGM plate under Mode I. The J-integral is determined for various load applied. The cracked plate is joined by bonding an FGM layer to TiB plate on its double side. The determination of the gain on J-integral by using FGM layer is highlighted. The calculation of J-integral of FGM’s involves the direction of the radius of the notch in order to reduce the J-integral.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 5 October 2015

Zhiyi Yu, Baoshan Zhu and Shuliang Cao

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was…

2127

Abstract

Purpose

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was carried out within the framework of two-fluid model. The purpose of this paper is to clarify the relative importance of various interphase forces on the mixed transport process, and the findings herein will be a base for the future study on the mechanism of the gas blockage phenomenon, which is the most challenging issue for such pumps.

Design/methodology/approach

Four types of interphase forces, i.e. drag force, lift force, virtual mass force and turbulent dispersion force (TDF) were taken into account. By comparing with the experiment in the respect of the head performance, the effectiveness of the numerical model was validated. In conditions of different inlet gas void fractions, bubble diameters and rotational speeds, the magnitude analyses were made for the interphase forces.

Findings

The results demonstrate that the TDF can be neglected in the running of the multiphase rotodynamic pump; the drag force is dominant in the impeller region and the outlet extended region. The sensitivity analyses of the bubble diameter and the rotational speed were also performed. It is found that larger bubble size is accompanied by smaller predicted drag but larger predicted lift and virtual mass, while the increase of the rotational speed can raise all the interphase forces mentioned above.

Originality/value

This paper has revealed the magnitude information and the relative importance of the interphase forces in a multiphase rotodynamic pump.

Details

Engineering Computations, vol. 32 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 1 November 2018

Rania M. Ghoniem, H.A. Abas and H.A. Bdair

Despite the fact that there being a large literature on simulation, there is as yet no generic paradigm or architecture to develop a three-dimensional (3-D) simulator which…

Abstract

Despite the fact that there being a large literature on simulation, there is as yet no generic paradigm or architecture to develop a three-dimensional (3-D) simulator which depends on autonomous intelligent objects. This has motivated us to introduce a 3-D simulation system based on intelligent objects for Physics Experimentation. We formulated the system’s components as an object-orientation model. So, the entities in every experiment’s work cell are modeled by characterizing their properties and functions into classes and objects of the system hierarchy. Intelligent objects are realized by developing a knowledge base (KB) that captures a set of rules/algorithms that operate on 3-D objects. Rules fall into two categories: action and property rules. In the simulation layer, the student is allowed, by using the virtual system, to stroll throughout the Physics laboratory in light of a walking model. Student gets to a simulation region to do an experiment through the detection of mathematical collision. From software engineering perspective, the proposed system facilitates the Physics experiment through making the specification of its applicable parts more modular and reusable. Moreover, a major pedagogical objective is achieved by permitting the student tuning parameters, fixing component of a device then visualizing outputs. This provides student well interpretation by viewing how distinct parameters affect the outcomes of the experiment. With the objective of student performance measuring, we utilized an exploratory group relying upon pre- and post-testing. The application results demonstrate that the simulator contributes positively to student performance in regard to practical Physics.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 22 March 2022

Hong Zhang and Tianlin Chen

The purpose of the study is to obtain and analyze vibro-acoustic characteristics.

Abstract

Purpose

The purpose of the study is to obtain and analyze vibro-acoustic characteristics.

Design/methodology/approach

A unified analysis model for the rotary composite laminated plate and conical–cylindrical double cavities coupled system is established. The related parameters of the unified model are determined by isoparametric transformation. The modified Fourier series are applied to construct the admissible displacement function and the sound pressure tolerance function of the coupled systems. The energy functional of the structure domain and acoustic field domain is established, respectively, and the structure–acoustic coupling potential energy is introduced to obtain the energy functional. Rayleigh–Ritz method was used to solve the energy functional.

Findings

The displacement and sound pressure response of the coupled systems are acquired by introducing the internal point sound source excitation, and the influence of relevant parameters of the coupled systems is researched. Through research, it is found that the impedance wall can reduce the amplitude of the sound pressure response and suppress the resonance of the coupled systems. Besides, the composite laminated plate has a good noise reduction effect.

Originality/value

This study can provide the theoretical guidance for vibration and noise reduction.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 18 January 2021

Hongxing Wang, LianZheng Ge, Ruifeng Li, Yunfeng Gao and Chuqing Cao

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research…

1050

Abstract

Purpose

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research also presents a motion optimization based on the 2-Norm of high-redundant mobile humanoid robots, in which a kinematic model is designed through the entire modeling.

Design/methodology/approach

The current study designs a highly redundant humanoid mobile robot with a differential mobile platform. The high-redundancy mobile humanoid robot consists of three modular parts (differential driving platform with two degrees of freedom (DOF), namely, left and right arms with seven DOF, respectively) and has total of 14 DOFs. Given the high redundancy of humanoid mobile robot, a kinematic model is designed through the entire modeling and an optimal solution extraction method based on 2-norm is proposed to solve the inverse kinematics multiple solutions problem. That is, the 2-norm of the angle difference before and after rotation is used as the shortest stroke index to select the optimal solution. The optimal solution of the inverse kinematics equation in the step is obtained by solving the minimum value of the objective function of a step. Through the step-by-step cycle in the entire tracking process, the kinematic optimization of the highly redundant humanoid robot in the entire tracking process is realized.

Findings

Compared with the before and after motion optimizations based on the 2-norm algorithm of the robot, its motion after optimization shows minimal fluctuation, improved smoothness, limited energy consumption and short path during the entire mobile tracking and operating process.

Research limitations/implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Practical implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Social implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Originality/value

Motion optimization based on the 2-norm of a highly redundant humanoid mobile robot with the entire modeling is performed on the basis of the entire modeling. This motion optimization can make the highly redundant humanoid mobile robot’s motion path considerably short, minimize energy loss and shorten time. These researches provide a theoretical basis for the follow-up research of the service robot, including tracking and operating target, etc. Finally, the motion optimization algorithm is verified by the tracking and operating behaviors of the robot and an example.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 2 March 2023

Kartik Venkatraman, Stéphane Moreau, Julien Christophe and Christophe Schram

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating…

1425

Abstract

Purpose

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating conditions. This paper aims at understanding the flow physics around a model VAWT for three different tip speed ratios corresponding to three different flow regimes.

Design/methodology/approach

This study achieves a first three-dimensional hybrid lattice Boltzmann method/very large eddy simulation (LBM-VLES) model for a complete scaled model VAWT with end plates and mast using the solver PowerFLOW. The power curve predicted from the numerical simulations is compared with the experimental data collected at Erlangen University. This study highlights the complexity of the turbulent flow features that are seen at three different operational regimes of the turbine using instantaneous flow structures, mean velocity, pressure iso-contours, blade loading and skin friction plots.

Findings

The power curve predicted using the LBM-VLES approach and setup provides a good overall match with the experimental power curve, with the peak and drop after the operational point being captured. Variable turbulent flow structures are seen over the azimuthal revolution that depends on the tip speed ratio (TSR). Significant dynamic stall structures are seen in the upwind phase and at the end of the downwind phase of rotation in the deep stall regime. Strong blade wake interactions and turbulent flow structures are seen inside the rotor at higher TSRs.

Research limitations/implications

The computational cost and time for such high-fidelity simulations using the LBM-VLES remains expensive. Each simulation requires around a week using supercomputing facilities. Further studies need to be performed to improve analytical VAWT models using inputs/calibration from high fidelity simulation databases. As a future work, the impact of turbulent and nonuniform inflow conditions that are more representative of a typical urban environment also needs to be investigated.

Practical implications

The LBM methodology is shown to be a reliable approach for VAWT power prediction. Dynamic stall and blade wake interactions reduce the aerodynamic performance of a VAWT. An ideal operation close to the peak of the power curve should be favored based on the local wind resource, as this point exhibits a smoother variation of forces improving operational performance. The 3D flow features also exhibit a significant wake asymmetry that could impact the optimal layout of VAWT clusters to increase their power density. The present work also highlights the importance of 3D simulations of the complete model including the support structures such as end plates and mast.

Social implications

Accurate predictions of power performance for Darrieus VAWTs could help in better siting of wind turbines thus improving return of investment and reducing levelized cost of energy. It could promote the development of onsite electricity generation, especially for industrial sites/urban areas and renew interest for VAWT wind farms.

Originality/value

A first high-fidelity simulation of a complete VAWT with end plates and supporting structures has been performed using the LBM approach and compared with experimental data. The 3D flow physics has been analyzed at different operating regimes of the turbine. These physical insights and prediction capabilities of this approach could be useful for commercial VAWT manufacturers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 117