Search results

1 – 10 of 125
Article
Publication date: 22 March 2021

Iman Mazinani, Mohammad Mohsen Sarafraz, Zubaidah Ismail, Ahmad Mustafa Hashim, Mohammad Reza Safaei and Somchai Wongwises

Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges…

Abstract

Purpose

Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges.

Design/methodology/approach

Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results.

Findings

The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research.

Originality/value

Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2000

Ramin Moshfegh, Xiangdong Li and Larsgunnar Nilsson

Two mesh refinement indicators based on the gradients of effective stress (GSIG) and effective plastic strain (GEPS), respectively, are proposed for adaptive finite element…

Abstract

Two mesh refinement indicators based on the gradients of effective stress (GSIG) and effective plastic strain (GEPS), respectively, are proposed for adaptive finite element analysis of the large deformation, quasi‐static or dynamic response of shell structures. The mesh refinement indicators are based on equi‐distributing the variation of stresses or plastic strains over the elements of the mesh. A program module is developed and implemented in the non‐linear explicit finite element code LS‐DYNA. This module provides element‐wise refinement evaluations so that selective mesh refinements are carried out in regions of the mesh where the values of local indicators exceed a user‐specified tolerance. The FE model of a conventional deep drawing process is used as a numerical model, including both material and geometrical non‐linearities, in order to demonstrate the versatility of the two refinement indicators. Four different refinement indicators, based on angle change, thickness change, GSIG and GEPS, are applied in this investigation. The numerical results are compared with experimental results regarding the thickness distribution versus cup height, cup height variation versus circumference angle, effective plastic strain in the deformed sheet and punch force. It is shown that the proposed indicators can identify finite elements which have high gradients of effective stress or effective plastic strain so that the mesh is refined in the regions undergoing the most severe deformations and the numerical results are improved.

Details

Engineering Computations, vol. 17 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 September 2014

Andrej Škrlec, Jernej Klemenc and Matija Fajdiga

In the event of a crash involving a car, its seats, together with their backrests and head supports, ensure the safety of the passengers. The filling material used for such a car…

Abstract

Purpose

In the event of a crash involving a car, its seats, together with their backrests and head supports, ensure the safety of the passengers. The filling material used for such a car seat is normally made of polyurethane foam. To simulate the behaviour of the seat assembly during a crash, the material characteristics of the seat-filling foam should be appropriately modelled. The purpose of this paper is to present a method, with which the proper parameter values of the selected material model for the seat-filling foam can be easily determined.

Design/methodology/approach

In the study, an experiment with the specimen from seat-filling foam was carried out. The results from this experiment were the basis for the determination of the parameter values of the low-density-foam material model, which is often used in crash-test simulations. Two different numerical optimisation algorithms – a genetic algorithm and a gradient-descent algorithm – were coupled with LS-DYNA explicit simulations to identify the material parameters.

Findings

The paper provides comparison of two optimisation algorithms and discusses the engineering applicability of the results.

Originality/value

This paper presents an approach for the identification of the missing parameter values of the highly non-linear material model, if these cannot be easily determined directly from experimental data.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 October 2023

Zhixiong Chen, Weishan Long, Li Song and Xinglin Li

This paper aims to research the tribological and dynamic characteristics of aeroengine hybrid ceramic bearings through wear experiments and simulation analysis.

Abstract

Purpose

This paper aims to research the tribological and dynamic characteristics of aeroengine hybrid ceramic bearings through wear experiments and simulation analysis.

Design/methodology/approach

First, the authors carried out wear experiments on Si3N4–GCr15 and GCr15–GCr15 friction pairs through the ball-disc wear test rig to explore the tribological properties of their materials. Second, using ANSYS/LS-DYNA simulation software, the dynamic simulation analysis of hybrid bearings was carried out under certain working conditions, and the dynamic contact stress of all-steel bearings of the same size was simulated and compared. Finally, the change of the maximum contact stress of the main bearing under the change of load and rotation speed was studied.

Findings

The results show that the Si3N4–GCr15 pair has better tribological performance. At the same time, under the conditions of high speed and heavy load, the simulation analysis shows that the contact stress between the ceramic ball and the raceway of the ring is smaller than the steel ball. That is, hybrid bearings have better transient mechanical properties than all-steel bearings. With the speed increasing to 12,000 r/min, the maximum stress point will shift in the inner and outer rings.

Originality/value

In this study, the tribological and transient mechanical properties of Si3N4 material were comprehensively analyzed through wear experiments and dynamic simulation analysis, which provided a reference for the design of hybrid bearings for next-generation aeroengines.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 March 2012

Rosario Borrelli, Umberto Mercurio and Simona Alguadich

The purpose of this paper is to improve knowledge of the water impact phenomenon from both the experimental and numerical points of view.

Abstract

Purpose

The purpose of this paper is to improve knowledge of the water impact phenomenon from both the experimental and numerical points of view.

Design/methodology/approach

A drop test campaign on water was carried out on semi‐cylindrical steel structures. Therefore, an experimental database for validation purpose was generated. Subsequently, a finite element model was developed in LS‐DYNA in order to reproduce the tests. The behaviour of water was modeled by using the smoothed particle hydrodynamics (SPH) methods. Numerical simulations were compared to experimental data and the influence of some numerical parameters on the simulations was investigated.

Findings

The FE model was found to be able to reproduce the tests, at least in terms of acceleration peak and distribution of plastic deformation. Acceptable prediction was also found for the pressure peak in soft areas.

Research limitations/implications

In case of low velocity impact, the water model was found to be too rigid and the acceleration peaks were over‐predicted by the simulations. Further investigations are needed to adjust the water model in order to obtain better results also in the case of low velocity impact.

Originality/value

The experimental database could be very useful to the crashworthiness community to validate their numerical models. Moreover, the present paper provides guidelines to modelling the water impact correctly.

Article
Publication date: 31 May 2019

George Bikakis, Nikolaos Tsigkros, Emilios Sideridis and Alexander Savaidis

The purpose of this paper is to investigate the ballistic impact response of square clamped fiber-metal laminates and monolithic plates consisting of different metal alloys using…

Abstract

Purpose

The purpose of this paper is to investigate the ballistic impact response of square clamped fiber-metal laminates and monolithic plates consisting of different metal alloys using the ANSYS LS-DYNA explicit nonlinear analysis software. The panels are subjected to central normal high velocity ballistic impact by a cylindrical projectile.

Design/methodology/approach

Using validated finite element models, the influence of the constituent metal alloy on the ballistic resistance of the fiber-metal laminates and the monolithic plates is studied. Six steel alloys are examined, namely, 304 stainless steel, 1010, 1080, 4340, A36 steel and DP 590 dual phase steel. A comparison with the response of GLAss REinforced plates is also implemented.

Findings

It is found that the ballistic limits of the panels can be substantially affected by the constituent alloy. The stainless steel based panels offer the highest ballistic resistance followed by the A36 steel based panels which in turn have higher ballistic resistance than the 2024-T3 aluminum based panels. The A36 steel based panels have higher ballistic limit than the 1010 steel based panels which in turn have higher ballistic limit than the 1080 steel based panels. The behavior of characteristic impact variables such as the impact load, the absorbed impact energy and the projectile’s displacement during the ballistic impact phenomenon is analyzed.

Originality/value

The ballistic resistance of the aforementioned steel fiber-metal laminates has not been studied previously. This study contributes to the scientific knowledge concerning the impact response of steel-based fiber-metal laminates and to the construction of impact resistant structures.

Details

International Journal of Structural Integrity, vol. 10 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 February 2015

Adik Yadao and R. S. Hingole

Today’s car is one of the most important things in everyone’s life .Every person wants to have his or her own car but the question that arises in each buyer’s mind is whether the…

172

Abstract

Today’s car is one of the most important things in everyone’s life .Every person wants to have his or her own car but the question that arises in each buyer’s mind is whether the vehicle is safe enough to spend so much of money so it is the responsibility of an mechanical engineer to make the vehical comfortable and at the Same time safer. Now a days automakers are coming with various energy absorbing devices such as crush box, door beams etc. this energy absorbing device s prove to be very useful in reducing the amount force that is being transmitted to the occupant. In this we are using impact energy absorber in efficient manner as compare to earlier. The various steps involved in this project starting from developing the cad model of this inner impact energy absorber using the CAD software CATIA V5 R19. Then pre-processing is carried out in HYPERMESH 11.0 which includes assigning material, properties, boundary conditions such as contacts, constraints etc. LS-DYNA971 is used as a solver and LS-POST is used for the post processing and results obtained are compared to the standards. By carrying out this idea it has been observed that there is a considerable amount of energy that is being absorbed by this energy-absorbing device. Along with this energy absorption, the intrusion in passenger compartment is also reduced by considerable amount. So for safer and comfortable car with inner impact energy absorber is one of the best options available. This will get implement by this research work.

Details

World Journal of Engineering, vol. 12 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 January 2010

Ron Layman, Samy Missoum and Jonathan Vande Geest

The use of stent‐grafts to canalize aortic blood flow for patients with aortic aneurysms is subject to serious failure mechanisms such as a leak between the stent‐graft and the…

Abstract

Purpose

The use of stent‐grafts to canalize aortic blood flow for patients with aortic aneurysms is subject to serious failure mechanisms such as a leak between the stent‐graft and the aorta (Type I endoleak). The purpose of this paper is to describe a novel computational approach to understand the influence of relevant variables on the occurrence of stent‐graft failure and quantify the probability of failure for aneurysm patients.

Design/methodology/approach

A parameterized fluid‐structure interaction finite element model of aortic aneurysm is built based on a multi‐material formulation available in LS‐DYNA. Probabilities of failure are assessed using an explicit construction of limit state functions with support vector machines (SVM) and uniform designs of experiments. The probabilistic approach is applied to two aneurysm geometries to provide a map of probabilities of failure for various design parameter values.

Findings

Parametric studies conducted in the course of this research successfully identified intuitive failure regions in the parameter space, and failure probabilities were calculated using both a simplified and more complex aneurysmal geometry.

Originality/value

This research introduces the use of SVM‐based explicit design space decomposition for probabilistic assessment applied to bioengineering problems. This technique allows one to efficiently calculate probabilities of failure. It is particularly suited for problems where outcomes can only be classified as safe or failed (e.g. leak or no leak). Finally, the proposed fluid‐structure interaction simulation accounts for the initiation of Type I endoleak between the graft and the aneurysm due to simultaneous fluid and solid forces.

Details

Engineering Computations, vol. 27 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 October 2017

Shile Yao, Zhu Feng Yue, Xiaoliang Geng and Peiyan Wang

The purpose of this paper is to present a study of radial aircraft tire for safety assessment during various scenarios.

Abstract

Purpose

The purpose of this paper is to present a study of radial aircraft tire for safety assessment during various scenarios.

Design/methodology/approach

A detailed finite element (FE) model of aircraft tire was established based on the actual geometry of the target tire for numerical simulations. As the major component of this tire, rubber material usually presents a complicated mechanical behavior. To obtain the reliable hyperelastic properties of rubber, a series of material tests have been processed. Moreover, in order to validate the proposed model, the simulations results of inflation and static load scenarios were compared with the experimental results. Both of the control volume and corpuscular particle method methods were used in the numerical simulations of aircraft tire.

Findings

The comparisons of the two methods exhibit close agreement with the experimental results. To assess the safety of aircraft tire during the landing scenario, the dynamic simulations were processed with different landing weights and vertical landing speeds. According to the relevant airworthiness regulations and technical documents, the tire pressure, deflection and load have been chosen as the safety criteria. Subsequently, the analysis, results and comments have been discussed in detail.

Originality/value

The validated FE model proposed in present study can be effectively used in tire modeling in static and dynamic problems, and also in the design process of aircraft tire.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 June 2020

Anton Egorov and Vitaly Egorov

The purpose of this paper is to expand possibilities of stability computing method when performing a dynamic analysis of bar- or rod-shaped elements for actual structures.

Abstract

Purpose

The purpose of this paper is to expand possibilities of stability computing method when performing a dynamic analysis of bar- or rod-shaped elements for actual structures.

Design/methodology/approach

The methodology is based on the changes of stress–strain state of the bar-shaped elements at the moment of buckling. The proposed method is based on three assumptions. Firstly, the spatial stress–strain state is determined in the bar. Secondly, technological deviations inherent in real structures are introduced into the bar. Thirdly, mechanical behaviour of the bar is investigated in the mode of real time, which makes it possible to take into account wave deformation processes in the bar. To implement the suggested method of analysis, LS-DYNA package was selected in a dynamic formulation using solid finite elements.

Findings

Validity of the proposed method is shown by an example of dynamic stability analysis of a steel flat thin bar with two types of loads: short-time and long-term axial compressions. Comparison of the results showed different nature of the mechanical behaviour of the bar: wave processes are observed under short-time loading, and continuous monotone ones are stated under long-term loads.

Practical implications

Research results are applicable in the rocket and space industry.

Originality/value

A new computer-based methodology for dynamic analysis of heterogeneous elastic-plastic bar-, rod-shaped structures under shock axial compressive loads is proposed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 125