Search results

1 – 2 of 2
Article
Publication date: 5 September 2016

Sahaya Senthamil Lourdusami and Rajasekaran Vairamani

The purpose of this paper is to analyze the performance of LCLC resonant converter (RC) with proportional integral controller and fuzzy gain scheduled proportional integral…

Abstract

Purpose

The purpose of this paper is to analyze the performance of LCLC resonant converter (RC) with proportional integral controller and fuzzy gain scheduled proportional integral controller.

Design/methodology/approach

The drawbacks of series RC and parallel resonant converter (PRC) are explained using relevant references in Section 1 of this paper. The necessity of RCs and the merits of zero voltage and zero current switching are given in the Section 2. In Section 3, the modeling of LCLC RC using state space technique is done. In Section 4, the open loop analysis and performance evaluation of proportional integral controller, fuzzy gain scheduled proportional controller using MATLAB Simulink is obtained. The hardware specification is given and experimental results are taken for LCLC RC. In Section 5, conclusion of study is given.

Findings

The LCLC RC overcomes the drawbacks of series and PRC. The fuzzy gain scheduled proportional integral controller is suitable for load variations in RC.

Originality/value

The output of the converter is not affected with the load variations since the controller suggested in the paper works for load changes and can be a solution for load parameter deviation applications. Also performance of the RC is improved by the fast response of the proposed controller.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 29 September 2022

Kaiyuan Wu, Hao Huang, Ziwei Chen, Min Zeng and Tong Yin

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding…

Abstract

Purpose

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding power supply. So a novel and simplified implementation of digital high-power pulsed MIG welding power supply with LLC resonant converter is proposed in this work.

Design/methodology/approach

A simple parallel full-bridge LLC resonant converter structure is used to design the digital power supply with high welding current, low arc voltage, high open-circuit voltage and a wide range of arc loads, by effectively exploiting the variable load and high-power applications of LLC resonant converter.

Findings

The efficiency of each converter can reach up to 92.3%, under the rated operating condition. Notably, with proposed scheme, a short-circuit current mutation of 300 A can stabilize at 60 A within 8 ms. Furthermore, the pulsed MIG welding test shows that a stable welding process with 280 A peak current can be realized and a well-formed weld bead can be obtained, thereby verifying the feasibility of LLC resonant converter for pulsed MIG welding power supply.

Originality/value

The high efficiency, high power density and weak EMI of LLC resonant converter are conducive to the further optimization of pulsed MIG welding power supply. Consequently, a high performance welding power supply is implemented by taking adequate advantages of LLC resonant converter, which can provide equipment support for exploring better pulsed MIG welding processes.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 2 of 2