Search results

1 – 10 of 182
Article
Publication date: 4 December 2023

Yanyan Zheng, Peng Liu, Yingxue Zhao and Zhichao Zhang

This paper examines how the level of low-carbon awareness (LCA) affects the remanufacturing strategy in a supply chain with an original equipment manufacturer (OEM) and an…

Abstract

Purpose

This paper examines how the level of low-carbon awareness (LCA) affects the remanufacturing strategy in a supply chain with an original equipment manufacturer (OEM) and an independent remanufacturer (IR) competing with each other.

Design/methodology/approach

Game theory and operations optimization.

Findings

The studies analytically characterize the threshold levels of the LCA in response to which the OEM and the IR will change their remanufacturing strategies from no remanufacturing to partial remanufacturing and then to full remanufacturing. In addition, the studies reveal that as compared with the OEM, the IR has more flexibility in terms of the market entry to remanufacturing with the level of LCA increasing. With the extended studies, it is exhibited that the above findings are robust to a good extent.

Originality/value

It can provide decision support for remanufacturing enterprises.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 31 January 2024

Olubukola Tokede and Anastasia Globa

This paper bridges the gap between the theory and practice by developing a life cycle sustainability tracker (LCST). The study is seeking to proffer solutions to an observed…

90

Abstract

Purpose

This paper bridges the gap between the theory and practice by developing a life cycle sustainability tracker (LCST). The study is seeking to proffer solutions to an observed shortcoming of conventional life cycle sustainability assessment (LCSA) communication platforms. Notably, the static nature of the information provided on such platforms has made it difficult for them to be used for real-time decision-making and predictions. The main aim of this paper is to develop a LCST that facilitates a dynamic visualisation of life cycle sustainability results and allows for an integrated benchmark across the dimensions of sustainability.

Design/methodology/approach

The study leverages the model development capabilities of the design science research strategy in accomplishing a dynamic and novel communication platform. A life cycle thinking methodology and appropriate multicriteria decision approach (MCDA) is applied to accomplish a comprehensive, streamlined and replicable approach in mapping and tracking the progress of sustainable development goals (SDGs) in the National Infrastructure Pipeline (NIP) projects in India.

Findings

It was found that: (1) The use of the LCST tracker provides a dynamic and holistic insight into the key LCSA indicators with clearly defined benchmarks to assess the impact on the SDG 11, (2) The NIP projects achieve an upward trend across all the regions, and the percentage of opportunities ranges from 11 to 24%, with the South experiencing the highest growth and the North having the minimal increase in percentage and (3) The assessment score (52–58%) provides performance metrics that align well with the LCST – which ranges between “Fair” and “Average” for all the regions in India.

Originality/value

The novelty of this research is that the LCST provides a transparent and harmonised approach to reporting on the LCSA results. The LCST utilises heat maps and radial mapping to achieve an intuitive display of large amounts of highly heterogeneous data, thus allowing the synthesis of large sets of information compactly and with coherence. Progress towards the SDGs change on a yearly basis; hence, a dynamic LCSA tool provides a timely and the valuable context to map and track performance across different regions and contexts.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 31 January 2024

Kilian Fricke, Thomas Bergs, Philipp Ganser and Martin Seimann

The aviation industry has seen consistent growth over the past few decades. To maintain its sustainability and competitiveness, it is important to have a comprehensive…

Abstract

Purpose

The aviation industry has seen consistent growth over the past few decades. To maintain its sustainability and competitiveness, it is important to have a comprehensive understanding of the environmental impacts across the entire life cycle of the industry, including materials, processes and resources; manufacturing and production; lifetime services; reuse; end-of-life; and recycling. One important component of aircraft engines, integral rotors known as Blisks, are made of high-value metallic alloys that require complex and resource-intensive manufacturing processes. The purpose of this paper is to assess the ecological and economical impacts generated through Blisk production and thereby identify significant ‘hot-spots’.

Design/methodology/approach

This paper focuses on the methodology and approach for conducting a full-scale Blisk life cycle assessment (LCA) based on ISO 14040/44. Unlike previous papers in the European Aerospace Science Network series, which focused on the first two stages of LCA, this publication delves into the “life cycle impact assessment” and “interpretation” stages, providing an overview of the life cycle inventory modeling, impact category selection and presenting preliminary LCA results for the Blisk manufacturing process chain.

Findings

The result shows that the milled titanium Blisk has a lower CO2 footprint than the milled nickel Blisk, which is less than half of the global warming potential (GWP) of the milled nickel Blisk. A main contributor to GWP arises from raw material production. However, no recycling scenarios were included in the analysis, which will be the topic of further investigations.

Originality/value

The originality of this work lies in the detailed ecological assessment of the manufacturing for complex engine components and the derivation of hot spots as well as potential improvements in terms of eco-footprint reduction throughout the products cradle-to-gate cycle. The LCA results serve as a basis for future approaches of process chain optimisation, use of “greener” materials and individual process improvements.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 December 2023

Kailash Choudhary, Narpat Ram Sangwa and Kuldip Singh Sangwan

This study aims to quantify and compare the environmental impacts of Marble-stone and Kota-stone flooring options widely used for buildings in India. The study discusses the…

Abstract

Purpose

This study aims to quantify and compare the environmental impacts of Marble-stone and Kota-stone flooring options widely used for buildings in India. The study discusses the possibility of carbon sequestration through Bamboo cultivation in India.

Design/methodology/approach

The study has followed a standard life cycle assessment (LCA) framework based on ISO 14040 guidelines. Three distinct phases have been compared on midpoint and endpoint assessment categories – raw material, polishing and disposal. Primary data has been collected from the construction site in India, and secondary data has been collected from the Ecoinvent 3.0 database. Previous studies have been referred to discuss and calculate the area of bamboo cultivation required to sequestrate the generated carbon from the flooring.

Findings

The study has found that endpoint category damage to resources, and midpoint categories of climate change, metal depletion and agricultural land use are highly impacted in building floorings. The study has also found that the Marble-stone floor generates higher environmental impacts than the Kota-stone floor in most of the midpoint and endpoint impact categories. This difference is significant in the raw material phase due to the different compositions of stones. The study also found that Bamboo has excellent potential to act as a carbon sink and mitigate the generated carbon.

Research limitations/implications

This study excludes human labour, cutting and distribution of floor tiles made of Marble-stone and Kota-stone. The researcher can use the study to evaluate, compare and benchmark the various building flooring options from the environmental perspective. The study aids to the body of knowledge available on the various building flooring options by presenting the LCA or the environmental impacts generated by two flooring options. It is expected that the architects and builders can use these results to develop carbon-neutral buildings. This study provides a methodology for governments, constructors, builders and individuals to evaluate, compare and benchmark the various construction materials from the environmental perspective by computing the environmental impacts throughout the life cycle of the materials.

Originality/value

This study compares two widely used building flooring options using the LCA methodology and evaluates the potential of bamboo cultivation near the buildings for carbon sinks. The study is unique because it shows the environmental impacts of two flooring options and the carbon sequestration method to mitigate/absorb the generated environmental impacts in or around the building itself through bamboo cultivation. This study may set the foundation for carbon-neutral buildings.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 28 September 2022

Angeliki Kylili, Phoebe-Zoe Georgali, Petros Christou and Paris Fokaides

The built environment is taking enormous leaps towards its digitalization. Computer-aided tools such as building information modeling (BIM) are found in the forefront of this…

490

Abstract

Purpose

The built environment is taking enormous leaps towards its digitalization. Computer-aided tools such as building information modeling (BIM) are found in the forefront of this evolution, playing a critical role in creating the foundations for the upcoming development of smart low-carbon cities. However, the potential of BIM is still untapped – links will need to be created among the available and forthcoming methodologies under one integral operational system. The purpose of this paper is to present an integrated BIM-based life cycle-oriented framework for achieving sustainable constructions at the pre-construction phase. The developed framework represents an example of the approaches that the construction industry will need to adopt to integrate the different tools under an integrated smart city context.

Design/methodology/approach

The methodological approach follows the development of four same-volume different-configuration three-dimensional BIM designs, which are coupled with life cycle assessment (LCA) tools for establishing sustainable building design.

Findings

The results of this paper indicated that the choice of building design and shape can play a significant role in reducing the embodied energy and embodied carbon of buildings, achieving a reduction of up to 15% compared to a reference building of same volume and gross floor area.

Originality/value

The originality of this paper is found in its approach application by coupling three-dimensional BIM models with LCA data, the use of reinforcement detailing in an nD BIM study and the employment of country-specific LCA databases.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 19 December 2023

Selena Aureli, Eleonora Foschi and Angelo Paletta

This study investigates the implementation of a sustainable circular business model from an accounting perspective. Its goal is to understand if and how decision- makers use…

1224

Abstract

Purpose

This study investigates the implementation of a sustainable circular business model from an accounting perspective. Its goal is to understand if and how decision- makers use management accounting systems, and what changes are needed if these systems are to support the transition toward a circular economy.

Design/methodology/approach

Dialogic accounting theory frames the case study of six companies that built a value network to develop and implement an innovative packaging solution consistent with circular economy principles. Content analysis was utilised to investigate the accounting tools used.

Findings

The findings indicate that circular solutions generate new organisational configurations based on value networks. Interestingly, managers’ decision-making process largely bypassed the accounting function; they relied on informal accounting and life cycle analysis, which stimulated a multi-stakeholder dialogue in a life cycle perspective.

Research limitations/implications

The research provides theoretical and practical insights into the capability of management accounting systems to support companies seeking circular solutions.

Practical implications

The authors offer implications for accounting practice, chief financial officers (CFOs) and accounting educators, suggesting that a dialogic approach may support value retention of resources, materials and products, as required by the circular economy.

Social implications

The research contributes to the debate about the role of accounting in sustainability, specifically the need for connecting for resource efficiency at the corporate level with the rationalisation of resource use within planetary boundaries.

Originality/value

The study contributes to the limited research into the role of management accounting in a company’s transition to circular business models. Dialogic accounting theory frames exploration of how accounting may evolve to help businesses become accountable to all stakeholders, including the environment.

Details

Accounting, Auditing & Accountability Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 6 February 2024

Nazanin Eisazadeh, Frank De Troyer and Karen Allacker

The aim is to holistically assess the environmental performance of windows and analyse how their design and characteristics contribute to the overall performance of the…

Abstract

Purpose

The aim is to holistically assess the environmental performance of windows and analyse how their design and characteristics contribute to the overall performance of the building/space. This study focuses on the performance of windows in patient rooms hosting less mobile people.

Design/methodology/approach

This study investigates the life cycle environmental impacts of different glazing types, window frames and fire safety doors at the product level. This article also presents a building-integrated environmental analysis of patient rooms that considers the multiple functionalities of windows by incorporating dynamic energy analysis, comfort and daylighting performance with a life cycle assessment (LCA) study.

Findings

The results indicate that the amount of flat glass is the main contributor to the environmental impacts of the glazing units. As for the patient rooms, global warming shows the most significant contribution to the environmental costs, followed by human toxicity, particulate matter formation and eutrophication. The key drivers for these impacts are production processes and operational energy use. This study highlights the significance of evaluating a wide range of criteria for assessing the performance of windows.

Originality/value

An integrated assessment approach is used to investigate the influence of windows on environmental performance by considering the link between window/design parameters and their effects on energy use/costs, daylighting, comfort and environmental impacts. The embodied impacts of different building elements and the influence of various design parameters on environmental performance are assessed and compared. The environmental costs are expressed as an external environmental cost (euro).

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 29 January 2024

Wanlin Chen and Joseph Lai

Proper performance assessment of residential building renovation is crucial to sustainable urban development. However, a comprehensive review of the literature in this research…

Abstract

Purpose

Proper performance assessment of residential building renovation is crucial to sustainable urban development. However, a comprehensive review of the literature in this research domain is lacking. This study aims to uncover the study trend, research hotspots, prominent contributors, research gaps and directions in this field.

Design/methodology/approach

With a hybrid review approach adopted, relevant literature was examined in three stages. In Stage 1, literature retrieved from Scopus was screened for their relevance to the study topic. In Stage 2, bibliographic data of the shortlisted literature underwent scientometric analyses by the VOSviewer software. Finally, an in-depth qualitative review was made on the key literature.

Findings

The research hotspots in performance assessment of residential building renovation were found: energy efficiency, sustainability, thermal comfort and life cycle assessment. After the qualitative review, the following research gaps and future directions were unveiled: (1) assessments of retrofits incorporating renewable energy and energy storage systems; (2) evaluation of policy options and financial incentives to overcome financial constraints; (3) establishment of reliable embodied energy and carbon datasets; (4) indoor environment assessment concerning requirements of COVID-19 prevention and involvement of water quality, acoustic insulation and daylighting indicators; and (5) holistic decision-making model concerning residents' intentions and safety, health, well-being and social indicators.

Originality/value

Pioneered in providing the first comprehensive picture of the assessment studies on residential building renovations, this study contributes to offering directions for future studies and insights conducive to making rational decisions for residential building renovations.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 11 December 2023

Muhammad Ashraf Fauzi, Khairul Firdaus Anuar, Nurhaizan Mohd Zainudin, Mohd Hanafiah Ahmad and Walton Wider

This study evaluates the knowledge structure of building information modeling (BIM) in green buildings. Buildings are one of the main contributors to carbon emissions, and…

Abstract

Purpose

This study evaluates the knowledge structure of building information modeling (BIM) in green buildings. Buildings are one of the main contributors to carbon emissions, and implementing BIM in green buildings is seen as an indispensable approach to mitigate environmental and climate change issues.

Design/methodology/approach

Through a bibliometric analysis, 297 publications retrieved from the Web of Science (WoS) were analyzed to explore their intellectual structure.

Findings

Bibliographic coupling analysis produced four clusters on current and emerging trends, while co-word analysis produced four clusters on future BIM and green building trends. Current and emerging trends revolve around BIM adoption in green and existing buildings, life cycle analysis (LCA) and sustainable rating tools. Future trends related to BIM and performance analysis and optimization, the BIM framework for green building design and construction, overcoming barriers and maximizing benefits in BIM adoption.

Research limitations/implications

The implications of this study are relevant to all BIM and green building stakeholders, including developers, engineers, architects, occupants, tenants and the whole community.

Originality/value

This study examines the crucial integration of BIM and green building within the more extensive construction and building field scope.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 12 September 2023

Myriam Ertz, Shashi Kashav, Tian Zeng and Shouheng Sun

Traditionally, life cycle assessment (LCA) has focused on environmental aspects, but integrating social aspects in LCA has gained traction among scholars and practitioners. This…

Abstract

Purpose

Traditionally, life cycle assessment (LCA) has focused on environmental aspects, but integrating social aspects in LCA has gained traction among scholars and practitioners. This study aims to review key social life cycle assessment (SLCA) themes, namely, drivers and barriers of SLCA implementation, methodology and measurement metrics, classification of initiatives to improve SLCA and customer perspectives in SLCA.

Design/methodology/approach

A total of 148 scientific papers extracted from the Web of Science database were used and analyzed using bibliometric and content analysis.

Findings

The findings suggest that the existing research ignores several aspects of SCLA, which impedes positive growth in topical scholarship, and the study proposes a classification of SLCA research paths to enrich future research. This study contributes positively to SLCA by further developing this area, and as such, this research is a primer to gain deeper knowledge about the state-of-the-art in SLCA as well as to foresee its future scope and challenges.

Originality/value

The study provides an up-to-date review of extant research pertaining to SLCA.

1 – 10 of 182