Search results

11 – 20 of 78
Article
Publication date: 13 July 2017

Erika Anneli Pärn and David Edwards

The purpose of this paper is to present a literature review of laser scanning and 3D modelling devices, modes of delivery and applications within the architecture, engineering…

Abstract

Purpose

The purpose of this paper is to present a literature review of laser scanning and 3D modelling devices, modes of delivery and applications within the architecture, engineering, construction and owner-operated sector. Such devices are inextricably linked to modern digital built environment practices, particularly when used in conjunction with as-built building information modelling (BIM) development. The research also reports upon innovative technological advancements (such as machine vision) that coalesce with 3D scanning solutions.

Design/methodology/approach

A synthesis of literature is used to develop: a hierarchy of the modes of delivery for laser scan devices; a thematic analysis of 3D terrestrial laser scan technology applications; and a componential cross-comparative tabulation of laser scan technology and specifications.

Findings

Findings reveal that the costly and labour intensive attributes of laser scanning devices have stimulated the development of hybrid automated and intelligent technologies to improve performance. Such developments are set to satisfy the increasing demand for digitisation of both existing and new buildings into BIM. Future work proposed will seek to: review what coalescence of digital technologies will provide an optimal and cost-effective solution to accurately re-constructing the digital built environment; conduct case studies that implement hybrid digital solutions in pragmatic facilities management scenarios to measure their performance and user satisfaction; and eliminate manual remodelling tasks (such as point cloud reconstruction) via the use of computational intelligence algorithms integral within cloud-based BIM platforms.

Originality/value

Although laser scanning and 3D modelling have been widely covered en passant within the literature, scant research has conducted a holistic review of the technology, its applications and future developments. This review presents concise and lucid reference guidance that will intellectually challenge, and better inform, both practitioners and researchers.

Details

Built Environment Project and Asset Management, vol. 7 no. 3
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 August 2017

Parlad Kumar Garg, Rupinder Singh and IPS Ahuja

The purpose of this paper is to optimize the process parameters to obtain the best dimensional accuracy, surface finish and hardness of the castings produced by using fused…

Abstract

Purpose

The purpose of this paper is to optimize the process parameters to obtain the best dimensional accuracy, surface finish and hardness of the castings produced by using fused deposition modeling (FDM)-based patterns in investment casting (IC).

Design/methodology/approach

In this paper, hip implants have been prepared by using plastic patterns in IC process. Taguchi design of experiments has been used to study the effect of six different input process parameters on the dimensional deviation, surface roughness and hardness of the implants. Analysis of variance has been used to find the effect of each input factor on the output. Multi-objective optimization has been done to find the combined best values of output.

Findings

The results proved that the FDM patterns can be used successfully in IC. A wax coating on the FDM patterns improves the surface finish and dimensional accuracy. The improved dimensional accuracy, surface finish and hardness have been achieved simultaneously through multi-objective optimization.

Research limitations/implications

A thin layer of wax is used on the plastic patterns. The effect of thickness of the layer has not been considered. Further research is needed to study the effect of the thickness of the wax layer.

Practical implications

The results obtained by the study would be helpful in making decisions regarding machining and/or coating on the parts produced by this process.

Originality/value

In this paper, multi-objective optimization of dimensional accuracy, surface roughness and hardness of hybrid investment cast components has been performed.

Details

Rapid Prototyping Journal, vol. 23 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2018

Jasgurpreet Singh Chohan, Rupinder Singh and Kamaljit Singh Boparai

This paper aims to focus on the changes in thermal and surface characteristics of acrylonitrile butadiene styrene (ABS) material when exposed to chemical vapours for surface…

Abstract

Purpose

This paper aims to focus on the changes in thermal and surface characteristics of acrylonitrile butadiene styrene (ABS) material when exposed to chemical vapours for surface finishing. The poor surface finish and the dimensional accuracy of the fused deposition modelling parts (of ABS material) because of the stair-stepping hinder their use for rapid tooling applications, which can be improved by vapour finishing process. The differential scanning calorimetry (DSC) tests are performed to investigate the thermal behaviour of ABS thermoplastic after vapour finishing.

Design/methodology/approach

The hip prosthesis replica has been used to highlight the efficacy of chemical finishing process for intricate and complex geometries. The replicas are treated with chemical vapours for different durations. The DSC tests are performed along with surface roughness, surface hardness and dimensional measurements of exposed replicas and compared with unexposed replica.

Findings

The longer finishing time, i.e. 20 s, manifested higher melting peak temperature, higher melting enthalpy and higher heat capacity along with smoother and harder surface as compared with unexposed replica. The finishing process enhanced the bonding strength and the heat-bearing capacity of ABS material. The vapour finishing process enhanced the thermal stability of the material which may extend its sustainability at higher temperatures.

Practical implications

The improved thermal stability of ABS thermoplastic after chemical vapour finishing has been demonstrated. This advancement allows the use of ABS in functional tooling suitable for small production runs with higher flexibility and lead time savings.

Originality/value

The heat effects associated with phase transitions as a function of temperature are studied in case of replicas finished with chemical vapours. The relationship between melting enthalpy and surface characteristics has been ascertained.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 June 2019

Vivek Kumar Tiwary, Arunkumar P., Anand S. Deshpande and Nikhil Rangaswamy

Due to intrinsic limitations, fused deposition modelling (FDM) products suffer from the bad surface finish and inaccurate dimensional accuracies restricting its usage in many…

Abstract

Purpose

Due to intrinsic limitations, fused deposition modelling (FDM) products suffer from the bad surface finish and inaccurate dimensional accuracies restricting its usage in many applications. Hence, there is a need for processing polymer patterns before, during and after their productions. This paper aims to highlight the importance of pre- and post-processing treatments on the FDM-based acrylonitrile butadiene styrene patterns improving its surface quality so, that it can be used in rapid investment casting process for making medical implants and other high precision components.

Design/methodology/approach

As a part of pre-processing treatment, the machine parameters affecting the surface quality were identified and optimised using design of experiments. The patterns developed after the first stage of optimisation were given different post-processing treatments, which included vapour smoothening, chemical treatment and sand paper polishing. The results were compared and the best ones were used for making patterns for making medical implants via rapid investment casting technique. The surface quality was checked while the dimensional changes happening during the stages of this hybrid technique were recorded using a three-dimensional optical scanner.

Findings

The surface roughness of the FDM based ABS patterns reduced from 21.63 to 14.40 µm with pre-processing treatments. Chemical treatment (post-processing treatment) turned to be the most suitable technique for reducing the surface roughness further down to 0.30 µm. Medical implants that used these pre- and post-processing treatments gave an average surface roughness of 0.68 µm. Cost and lead time comparisons showed that rapid investment casting technique can be a better method for low volume, customised and with specific requirements.

Originality/value

FDM parts/medical implants produced by rapid investment casting technique suffer from the inferior surface finish and inaccurate dimensional accuracies limiting its applications. A systematic approach to overcome this issue is presented in this research paper. This will directly help the end users and the manufacturers of medical implants, wherein, better surface finish and dimensionally accurate components are expected.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2018

Hongbin Li, Taiyong Wang, Jian Sun and Zhiqiang Yu

The purpose of this paper is to study the effects of these major parameters, including layer thickness, deposition velocity and infill rate, on product’s mechanical properties and…

1417

Abstract

Purpose

The purpose of this paper is to study the effects of these major parameters, including layer thickness, deposition velocity and infill rate, on product’s mechanical properties and explore the quantitative relationship between these key parameters and tensile strength of the part.

Design/methodology/approach

A VHX-1000 super-high magnification lens zoom three-dimensional (3D) microscope is utilized to observe the bonding degree between filaments. A temperature sensor is embedded into the platform to collect the temperature of the specimen under different parameters and the bilinear elastic-softening cohesive zone model is used to analyze the maximum stress that the part can withstand under different interface bonding states.

Findings

The tensile strength is closely related to interface bonding state, which is determined by heat transition. The experimental results indicate that layer thickness plays the predominant role in affecting bonding strength, followed by deposition velocity and the effect of infill rate is the weakest. The numerical analysis results of the tensile strength predict models show a good coincidence with experimental data under the elastic and elastic-softened interface states, which demonstrates that the tensile strength model can predict the tensile strength exactly and also reveals the work mechanism of these parameters on tensile strength quantitatively.

Originality/value

The paper establishes the quantitative relationship between main parameters including layer thickness, infill rate and deposition velocity and tensile strength for the first time. The numerically analyzed results of the tensile strength predict model show a good agreement with the experimental result, which demonstrates the effectiveness of this predict model. It also reveals the work mechanism of the parameters on tensile strength quantitatively for the first time.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2017

Miguel Fernandez-Vicente, Ana Escario Chust and Andres Conejero

The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process for…

Abstract

Purpose

The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process for clinical practitioners and orthotic technicians alike. It further functions to reduce the dependency of the operators’ abilities and skills.

Design/methodology/approach

The technical assessment covers low-cost three-dimensional (3D) scanning, free computer-aided design (CAD) software, and desktop 3D printing and acetone vapour finishing. To analyse its viability, a cost comparison was carried out between the proposed workflow and the traditional CMIO manufacture method.

Findings

The results show that the proposed workflow is a technically feasible and cost-effective solution to improve upon the traditional process of design and manufacture of custom-made static trapeziometacarpal (TMC) orthoses. Further studies are needed for ensuring a clinically feasible approach and for estimating the efficacy of the method for the recovery process in patients.

Social implications

The feasibility of the process increases the impact of the study, as the great accessibility to this type of 3D printers makes the digital fabrication method easier to be adopted by operators.

Originality/value

Although some research has been conducted on digital fabrication of CMIO, few studies have investigated the use of desktop 3D printing in any systematic way. This study provides a first step in the exploration of a new design workflow using low-cost digital fabrication tools combined with non-manual finishing.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 September 2021

Sugavaneswaran M., Prashanthi B. and John Rajan A.

This paper aims to enhance the surface finish of the fused deposition modeling (FDM) part using the vapor smoothening (VS) post-processing method and to study the combined effect…

Abstract

Purpose

This paper aims to enhance the surface finish of the fused deposition modeling (FDM) part using the vapor smoothening (VS) post-processing method and to study the combined effect of FDM and VS process parameters on the quality of the part.

Design/methodology/approach

Analysis of variance method is used to understand the significance of the FDM and VS process parameters. Following this, the optimized parameter for multiple criteria response is reported using the technique for order preference by similarity to ideal solution. The process parameters alternatives are build orientation angle, build surface normal and exposure time and the criteria are surface roughness and dimensional error percentage.

Findings

The result observed contradicts the result reported on the independent parameter optimization of FDM and VS processes. There is a radical improvement in the surface finish on account of the coating process and an increase in the exposure time results in the decrease of the surface roughness. Minimum surface roughness of 0.11 µm is observed at 1,620 build angle and the least dimensional error of 0.01% is observed at build orientation angle 540. The impact of VS on the up-facing surface is different from the down-facing surface due to the removal of support material burrs and the exposure of the surface to vapor direction.

Originality/value

A study on the multi-criteria decision-making to ascertain the effect of post-processing on FDM component surface normal directed both to downward (build angle 0°–90°) and to upward (build angle 99°–180°) are reported for the first time in this article. The data reported for the post-processed FDM part at the build angle 0°–180° can be used as a guideline for selecting the optimal parameter and for assigning appropriate tolerance in the CAD model.

Article
Publication date: 8 March 2013

B.B. Biswal, B.B. Deepak and Y. Rao

The purpose of this paper is to develop a new methodology to find out the best robotic assembly sequence amongst feasible robotic sequences.

Abstract

Purpose

The purpose of this paper is to develop a new methodology to find out the best robotic assembly sequence amongst feasible robotic sequences.

Design/methodology/approach

The feasible robotic assembly sequences were generated based on the assembly constraints and later and artificial immune system (AIS) was implemented to find out the best assembly sequence.

Findings

The paper reveals the best assembly sequence.

Originality/value

Robotic assembly has expanded the process capabilities in the manufacturing world because of the fact that it is faster, more efficient, precise and cost‐effective process than any conventional mechanized process. Since a robotic system is a cost‐intensive one it is necessary to find out the correct and optimal sequence with the constraints of the process in mind while dealing with assembled products with large number of parts.

Details

Journal of Manufacturing Technology Management, vol. 24 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 1 February 2016

SL Soh, S K Ong and A Y C Nee

This research aims to propose a methodology for a systematic, concurrent consideration of design for assembly (DFA) and disassembly guidelines and constraints for product…

1681

Abstract

Purpose

This research aims to propose a methodology for a systematic, concurrent consideration of design for assembly (DFA) and disassembly guidelines and constraints for product remanufacturing. The methodology provides a holistic approach to design product from the remanufacturing perspective.

Design/methodology/approach

The proposed methodology incorporates parts’ integration assessment and evaluation of part complexity and accessibility taking into consideration both DFA and design-for-disassembly (DFD) guidelines and constraints. Metrics for accessibility and complexity in retrieving the remanufacturable cores from a product are evaluated to determine the best possible disassembly route considering the practical constraints which an operator might face during disassembly. As there could be more than one feasible disassembly route to retrieve a core during remanufacturing, a disassembly evaluation is conducted to determine the optimal path after combination of the parts of the assembly.

Findings

In remanufacturing, products need to be disassembled and re-assembled again. Conflicts exist between DFA and DFD. The proposed methodology serves to address these conflicting issues. The proposed methodology eases a designer’s effort systematically to incorporate both aspects, by incorporating practical consideration to determine an optimal disassembly sequence through integrating the handling aspect of assembly complexity assessment with the U-Rating disassembly effort indexing scheme to provide a quantitative evaluation of disassembly complexity, as disassembly still largely requires human effort.

Research limitations/implications

Future research will explore methods to improve the user interface with features to determine feasible disassembly routes of a product automatically. This will relieve the effort of the product designer to a great extent.

Originality/value

This paper proposes a methodology for a systematic, concurrent consideration of DFA and DFD to provide a holistic approach to product design from the remanufacturing perspective to ease the designer’s task. Practical considerations will be made to determine the optimal disassembly route of the product. DFD will only be required to be applied to the selected disassembly route to minimize conflicts with DFA.

Details

Assembly Automation, vol. 36 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

11 – 20 of 78