Search results

1 – 3 of 3
Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Book part
Publication date: 4 April 2024

Ren-Raw Chen and Chu-Hua Kuei

Due to its high leverage nature, a bank suffers vitally from the credit risk it inherently bears. As a result, managing credit is the ultimate responsibility of a bank. In this…

Abstract

Due to its high leverage nature, a bank suffers vitally from the credit risk it inherently bears. As a result, managing credit is the ultimate responsibility of a bank. In this chapter, we examine how efficiently banks manage their credit risk via a powerful tool used widely in the decision/management science area called data envelopment analysis (DEA). Among various existing versions, our DEA is a two-stage, dynamic model that captures how each bank performs relative to its peer banks in terms of value creation and credit risk control. Using data from the largest 22 banks in the United States over the period of 1996 till 2013, we have identified leading banks such as First Bank systems and Bank of New York Mellon before and after mergers and acquisitions, respectively. With the goal of preventing financial crises such as the one that occurred in 2008, a conceptual model of credit risk reduction and management (CRR&M) is proposed in the final section of this study. Discussions on strategy formulations at both the individual bank level and the national level are provided. With the help of our two-stage DEA-based decision support systems and CRR&M-driven strategies, policy/decision-makers in a banking sector can identify improvement opportunities regarding value creation and risk mitigation. The effective tool and procedures presented in this work will help banks worldwide manage the unknown and become more resilient to potential credit crises in the 21st century.

Details

Advances in Pacific Basin Business, Economics and Finance
Type: Book
ISBN: 978-1-83753-865-2

Keywords

Book part
Publication date: 5 October 2018

Olubukola Tokede, Adam Ayinla and Sam Wamuziri

The robust appraisal of exploration drilling concepts is essential for establishing the economic viability of a prospective recovery field. This study evaluates the different…

Abstract

The robust appraisal of exploration drilling concepts is essential for establishing the economic viability of a prospective recovery field. This study evaluates the different concept selection methods that were considered for drilling operations at the Trym field in Norway. The construction of drilling rigs is a capital-intensive process, and it involves high levels of economic risk. These risks can be broadly categorised as aleatoric (i.e. those related to chance) and epistemic (i.e. those related to knowledge). Evaluating risks in the investment appraisal process tends to be a complicated process. Project risks are evaluated using Monte Carlo simulation (MCS) and are based on the fuzzy analytic hierarchy process (AHP). MCS provides a useful means of evaluating variabilities (i.e. aleatoric risks) in oil drilling operations. However, many of the economic risks in oil drilling processes are unanticipated, and, in some cases, are not readily expressible in quantitative values. The fuzzy AHP is therefore used to appraise the qualitatively defined indirect revenues comprising risks that affect future flexibilities, schedule certainty and health and safety performance. Both the Monte Carlo technique and the fuzzy AHP technique found that a cumulative revenue variation of up to 30% is possible in any of the considered drilling options. The fuzzy AHP technique estimates that the chances of profitability being less than NOK 1 billion over a five-year period is 0.5%, while the Monte Carlo technique estimates suggest a more conservative proportion of 10%. Overall, the fuzzy AHP technique is easy to use and flexible, and it demonstrates increased robustness and improved predictability.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

1 – 3 of 3