Search results

1 – 10 of 13
Article
Publication date: 3 February 2023

Arad Azizi, Fatemeh Hejripour, Jacob A. Goodman, Piyush A. Kulkarni, Xiaobo Chen, Guangwen Zhou and Scott N. Schiffres

AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the…

Abstract

Purpose

AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the thermal conductivity of as-built materials as a function of processing (energy density, laser power, laser scanning speed, support structure) and build orientation, are not well explored in the literature. This study aims to elucidate the relationship between processing, microstructure, and thermal conductivity.

Design/methodology/approach

The thermal conductivity of laser powder bed fusion (L-PBF) AlSi10Mg samples are investigated by the flash diffusivity and frequency domain thermoreflectance (FDTR) techniques. Thermal conductivities are linked to the microstructure of L-PBF AlSi10Mg, which changes with processing conditions. The through-plane exceeded the in-plane thermal conductivity for all energy densities. A co-located thermal conductivity map by frequency domain thermoreflectance (FDTR) and crystallographic grain orientation map by electron backscattered diffraction (EBSD) was used to investigate the effect of microstructure on thermal conductivity.

Findings

The highest through-plane thermal conductivity (136 ± 2 W/m-K) was achieved at 59 J/mm3 and exceeded the values reported previously. The in-plane thermal conductivity peaked at 117 ± 2 W/m-K at 50 J/mm3. The trend of thermal conductivity reducing with energy density at similar porosity was primarily due to the reduced grain size producing more Al-Si interfaces that pose thermal resistance. At these interfaces, thermal energy must convert from electrons in the aluminum to phonons in the silicon. The co-located thermal conductivity and crystallographic grain orientation maps confirmed that larger colonies of columnar grains have higher thermal conductivity compared to smaller columnar grains.

Practical implications

The thermal properties of AlSi10Mg are crucial to heat transfer applications including additively manufactured heatsinks, cold plates, vapor chambers, heat pipes, enclosures and heat exchangers. Additionally, thermal-based nondestructive testing methods require these properties for applications such as defect detection and simulation of L-PBF processes. Industrial standards for L-PBF processes and components can use the data for thermal applications.

Originality/value

To the best of the authors’ knowledge, this paper is the first to make coupled thermal conductivity maps that were matched to microstructure for L-PBF AlSi10Mg aluminum alloy. This was achieved by a unique in-house thermal conductivity mapping setup and relating the data to local SEM EBSD maps. This provides the first conclusive proof that larger grain sizes can achieve higher thermal conductivity for this processing method and material system. This study also shows that control of the solidification can result in higher thermal conductivity. It was also the first to find that the build substrate (with or without support) has a large effect on thermal conductivity.

Article
Publication date: 22 September 2022

Srinivasan Raghavan, Jan Dzugan, Sylwia Rzepa, Pavel Podany, Norman Soh, Lim Jia Hao and Niaz Khan

This study aims to investigate the effect of the wall thickness, deposition orientation and two different post-processing methods on the local mechanical properties and…

Abstract

Purpose

This study aims to investigate the effect of the wall thickness, deposition orientation and two different post-processing methods on the local mechanical properties and microstructure of additively manufactured parts made of maraging steel. In order to examine the local properties of the build, miniaturized testing specimens were employed. Before application of small-sized specimens, their performance was verified.

Design/methodology/approach

The investigation was composed of two stages. As first, the part thickness, specimen size and orientation were studied on a laser-powder bed fusion (L-PBF) platform with deposited walls of various thicknesses made of maraging steel. Subsequently, the influence of different heat-treatment methods was investigated on the final product, i.e. impellers. The miniaturized and standard tensile tests were performed to investigate the local mechanical properties. The porosity, microstructures and fracture surfaces were analysed by X-ray-computed tomography, X-ray diffraction and scanning electron microscopy with electron backscatter diffraction.

Findings

The results revealed good agreement between the values provided by miniaturized and standard specimens. The thinnest parts produced had the largest pores and the highest scatter of elongation values. In these cases, also the sub-contour porosity was observed. Part thickness affected pores’ size and results repeatability but not total porosity. The two-step heat-treatment (solutionizing and age-hardening) exhibited the highest yield and ultimate tensile strength.

Practical implications

The microstructure and local mechanical properties were studied on L-PBF platform with deposited walls of various thicknesses. Subsequently, a detailed analysis was conducted on real components (impellers) made of maraging steel, commonly used in tooling, automotive and aerospace industries.

Originality/value

The broadly understood quality of manufactured parts is crucial for their reliable and long-lasting operation. The findings presented in the manuscript allow the readers better understanding of the connection between deposition parameters, post-processing, microstructure and mechanical performance of additive manufacturing-processed parts.

Article
Publication date: 18 March 2024

Yu-Xiang Wang, Chia-Hung Hung, Hans Pommerenke, Sung-Heng Wu and Tsai-Yun Liu

This paper aims to present the fabrication of 6061 aluminum alloy (AA6061) using a promising laser additive manufacturing process, called the laser-foil-printing (LFP) process…

Abstract

Purpose

This paper aims to present the fabrication of 6061 aluminum alloy (AA6061) using a promising laser additive manufacturing process, called the laser-foil-printing (LFP) process. The process window of AA6061 in LFP was established to optimize process parameters for the fabrication of high strength, dense and crack-free parts even though AA6061 is challenging for laser additive manufacturing processes due to hot-cracking issues.

Design/methodology/approach

The multilayers AA6061 parts were fabricated by LFP to characterize for cracks and porosity. Mechanical properties of the LFP-fabricated AA6061 parts were tested using Vicker’s microhardness and tensile testes. The electron backscattered diffraction (EBSD) technique was used to reveal the grain structure and preferred orientation of AA6061 parts.

Findings

The crack-free AA6061 parts with a high relative density of 99.8% were successfully fabricated using the optimal process parameters in LFP. The LFP-fabricated parts exhibited exceptional tensile strength and comparable ductility compared to AA6061 samples fabricated by conventional laser powder bed fusion (LPBF) processes. The EBSD result shows the formation of cracks was correlated with the cooling rate of the melt pool as cracks tended to develop within finer grain structures, which were formed in a shorter solidification time and higher cooling rate.

Originality/value

This study presents the pioneering achievement of fabricating crack-free AA6061 parts using LFP without the necessity of preheating the substrate or mixing nanoparticles into the melt pool during the laser melting. The study includes a comprehensive examination of both the mechanical properties and grain structures, with comparisons made to parts produced through the traditional LPBF method.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 December 2023

Murat Isik, Isa Emami Tabrizi, Raja Muhammad Awais Khan, Mehmet Yildiz, Eda Aydogan and Bahattin Koc

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and…

Abstract

Purpose

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and machinery industries. Most complex or assembled parts require internal features (IF) such as holes, channels, slots, or guides for locational and mating requirements. Therefore, it is critical to understand and compare the structural and mechanical properties of additively manufactured and conventionally machined IFs.

Design/methodology/approach

In this study, mechanical and microstructural properties of Inconel 718 (Inc718) alloy internal features, manufactured either as-built with AM or machining of additively manufactured (AMed) part thereafter were investigated.

Findings

The results showed that the average ultimate tensile strength (UTS) of additively manufactured center internal feature (AM-IF) is almost analogous to the machined internal feature (M-IF). However, the yield strength of M-IF is greater than that of AM-IF due the greater surface roughness of the internal feature in AM-IF, which is deemed to surpass the effect of microstructure on the mechanical performance. The results of digital image correlation (DIC) analysis suggest that AM-IF and M-IF conditions have similar strain values under the same stress levels but the specimens with as built IF have a more locally ductile region around their IF, which is confirmed by hardness test results. But this does not change global elongation behavior. The microstructural evolution starting from as-built (AB) and heat-treated (HT) samples to specimens with IF are examined. The microstructure of HT specimens has bimodal grain structure with d phase while the AB specimens display a very fine dendritic microstructure with the presence of carbides. Although they both have close values, machined specimens have a higher frequency of finer grains based on SEM images.

Originality/value

It was shown that the concurrent creation of the IF during AM can provide a final part with a preserved ultimate tensile strength and elongation but a decreased yield strength. The variation in UTS of AM-IF increases due to the surface roughness near the internal feature as compared to smooth internal surfaces in M-IF. Hence, the outcomes of this study are believed to be valuable for the industry in terms of determining the appropriate production strategy of parts with IF using AM and postprocessing processes.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 August 2023

Kevin Moj, Robert Owsiński, Grzegorz Robak and Munish Kumar Gupta

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of…

Abstract

Purpose

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of structural components with enhanced performance. Numerous studies have shown that the technical qualities of AM components are profoundly affected by the discovery of novel metastable substructures in diverse alloys. Therefore, the purpose of this study is to determine the effect of cell structure parameters on its mechanical response.

Design/methodology/approach

Initially, a methodology was suggested for testing porous materials, focusing on static tensile testing. For a qualitative evaluation of the cellular structures produced, computed tomography (CT) was used. Then, the CT scanner was used to analyze a sample and determine its actual relative density, as well as perform a detailed geometric analysis.

Findings

The experimental research demonstrates that the mechanical properties of a cell’s structure are significantly influenced by its shape during formation. It was also determined that using selective laser melting to produce cell structures with a minimum single-cell size of approximately 2 mm would be the most appropriate method.

Research limitations/implications

Further studies of cellular structures for testing their static tensile strength are planned for the future. The study will be carried out for a larger number of samples, taking into account a wider range of cellular structure parameters. An important step will also be the verification of the results of the static tensile test using numerical analysis for the model obtained by CT scanning.

Originality/value

The fabrication of metallic parts with different cellular structures is very important with a selective laser melted machine. However, the determination of cell size and structure with mechanical properties is quiet novel in this current investigation.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2024

Asif Ur Rehman, Pedro Navarrete-Segado, Metin U. Salamci, Christine Frances, Mallorie Tourbin and David Grossin

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective…

Abstract

Purpose

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective laser sintering (SLS), a dynamic three-dimensional computational model was developed to forecast thermal behavior of hydroxyapatite (HA) bioceramic.

Design/methodology/approach

AM has revolutionized automotive, biomedical and aerospace industries, among many others. AM provides design and geometric freedom, rapid product customization and manufacturing flexibility through its layer-by-layer technique. However, a very limited number of materials are printable because of rapid melting and solidification hysteresis. Melting-solidification dynamics in powder bed fusion are usually correlated with welding, often ignoring the intrinsic properties of the laser irradiation; unsurprisingly, the printable materials are mostly the well-known weldable materials.

Findings

The consolidation mechanism of HA was identified during its processing in a ceramic SLS device, then the effect of the laser energy density was studied to see how it affects the processing window. Premature sintering and sintering regimes were revealed and elaborated in detail. The full consolidation beyond sintering was also revealed along with its interaction to baseplate.

Originality/value

These findings provide important insight into the consolidation mechanism of HA ceramics, which will be the cornerstone for extending the range of materials in laser powder bed fusion of ceramics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 April 2023

Mudassar Rehman, Yanen Wang, Kashif Ishfaq, Haiou Yang, Ray Tahir Mushtaq, M. Saravana Kumar and Ammar Ahmed

Since the biomedical implants with an improved compressive strength, near bone elastic modulus, controlled porosity, and sufficient surface roughness, can assist in long term…

Abstract

Purpose

Since the biomedical implants with an improved compressive strength, near bone elastic modulus, controlled porosity, and sufficient surface roughness, can assist in long term implantation. Therefore, the fine process tuning plays its crucial role to develop optimal settings to achieve these desired properties. This paper aims to find applications for fine process tuning in laser powder bed fusion of biomedical Ti alloys for load-bearing implants.

Design/methodology/approach

In this work, the parametric porosity simulations were initially performed to simulate the process-induced porosity for selective laser-melted Ti6Al4V as per full factorial design. Continually, the experiments were performed to validate the simulation results and perform multiresponse optimization to fine-tune the processing parameters. Three levels of each control variable, namely, laser power – Pl (180, 190, 200) W, scanning speed – Vs (1500, 1600, 1700) mm/s and scan orientation – ϴ{1(0,0), 2(0,67°), 3(0,90°)} were used to investigate the processing performance. The measured properties from this study include compressive yield strength, elastic modulus, process-induced porosity and surface roughness. Finally, confirmatory experiments and comparisons with the already published works were also performed to validate the research results.

Findings

The results of porosity parametric simulation and experiments in selective laser melting of Ti6Al4V were found close to each other with overall porosity (less than 10%). The fine process tuning was resulted in optimal settings [Pl (200 W), Vs (1500 mm/s), ϴ (0,90°)], [Pl (200 W), Vs (1500 mm/s), ϴ (0,67°)], [Pl (200 W), Vs (1500 mm/s), ϴ (0,0)] and [Pl (200 W), Vs (1500 mm/s), ϴ (0,0)] with higher compressive strength (672.78 MPa), near cortical bone elastic modulus (12.932 GPa), process-induced porosity (0.751%) and minimum surface roughness (2.72 µm). The morphology of the selective laser melted (SLMed) surface indicated that the lack of fusion pores was prominent because of low laser energy density among the laser and powder bed. Confirmatory experimentation revealed that an overall percent improvement of around 15% was found between predicted and the experimental values.

Originality/value

Since no significant works are available on the collaborative optimization and fine process tuning in laser powder bed fusion of biomedical Ti alloys for different load bearing implants. Therefore, this work involves the comprehensive investigation and multi-objective optimization to determine optimal parametric settings for better mechanical and physical properties. Another novel aspect is the parametric porosity simulation using Ansys Additive to assist in process parameters and their levels selection. As a result, selective laser melted Ti alloys at optimal settings may help in examining the possibility for manufacturing metallic implants for load-bearing applications.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 March 2024

Qiuchen Zhao, Xue Li, Junchao Hu, Yuehui Jiang, Kun Yang and Qingyuan Wang

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under…

Abstract

Purpose

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under as-built conditions.

Design/methodology/approach

Constant amplitude and two-step variable amplitude fatigue tests were carried out using ultrasonic fatigue equipment. The fracture surface of the failure specimen was quantitatively analyzed by scanning electron microscope (SEM).

Findings

The results show that the competition of surface and interior crack initiation modes leads to a duplex S–N curve. Both manufacturing defects (such as the lack of fusion) and inclusions can act as initially fatal fatigue microcracks, and the fatigue sensitivity level decreases with the location, size and type of the maximum defects.

Originality/value

The research results play a certain role in understanding the ultra-high cycle fatigue behavior of additive manufacturing aluminum alloys. It can provide reference for improving the process parameters of SLM technology.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 December 2023

Muhammad Arif Mahmood, Chioibasu Diana, Uzair Sajjad, Sabin Mihai, Ion Tiseanu and Andrei C. Popescu

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification…

Abstract

Purpose

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification. Currently, the porosity estimation is limited to powder bed fusion. The porosity estimation needs to be explored in the laser melting deposition (LMD) process, particularly analytical models that provide cost- and time-effective solutions compared to finite element analysis. For this purpose, this study aims to formulate two mathematical models for deposited layer dimensions and corresponding porosity in the LMD process.

Design/methodology/approach

In this study, analytical models have been proposed. Initially, deposited layer dimensions, including layer height, width and depth, were calculated based on the operating parameters. These outputs were introduced in the second model to estimate the part porosity. The models were validated with experimental data for Ti6Al4V depositions on Ti6Al4V substrate. A calibration curve (CC) was also developed for Ti6Al4V material and characterized using X-ray computed tomography. The models were also validated with the experimental results adopted from literature. The validated models were linked with the deep neural network (DNN) for its training and testing using a total of 6,703 computations with 1,500 iterations. Here, laser power, laser scanning speed and powder feeding rate were selected inputs, whereas porosity was set as an output.

Findings

The computations indicate that owing to the simultaneous inclusion of powder particulates, the powder elements use a substantial percentage of the laser beam energy for their melting, resulting in laser beam energy attenuation and reducing thermal value at the substrate. The primary operating parameters are directly correlated with the number of layers and total height in CC. Through X-ray computed tomography analyses, the number of layers showed a straightforward correlation with mean sphericity, while a converse relation was identified with the number, mean volume and mean diameter of pores. DNN and analytical models showed 2%–3% and 7%–9% mean absolute deviations, respectively, compared to the experimental results.

Originality/value

This research provides a unique solution for LMD porosity estimation by linking the developed analytical computational models with artificial neural networking. The presented framework predicts the porosity in the LMD-ed parts efficiently.

Article
Publication date: 19 October 2023

Anuj Kumar and Mukul Shukla

Understanding and tailoring the solidification characteristics and microstructure evolution in as-built parts fabricated by laser powder bed fusion (LPBF) is crucial as they…

Abstract

Purpose

Understanding and tailoring the solidification characteristics and microstructure evolution in as-built parts fabricated by laser powder bed fusion (LPBF) is crucial as they influence the final properties. Experimental approaches to address this issue are time and capital-intensive. This study aims to develop an efficient numerical modeling approach to develop the process–structure (P-S) linkage for LPBF-processed Inconel 718.

Design/methodology/approach

In this study, a numerical approach based on the finite element method and cellular automata was used to model the multilayer, multitrack LPBF build for predicting the solidification characteristics (thermal gradient G and solidification rate R) and the average grain size. Validations from published experimental studies were also carried out to ensure the reliability of the proposed numerical approach. Furthermore, microstructure simulations were used to develop P-S linkage by evaluating the effects of key LPBF process parameters on G × R, G/R and average grain size. A solidification or G-R map was also developed to comprehend the P-S linkage.

Findings

It was concluded from the developed G-R map that low laser power and high scan speed will result in a finer microstructure due to an increase in G × R, but due to a decrease in G/R, columnar characteristics are also reduced. Moreover, increasing the layer thickness and decreasing the hatch spacing lowers the G × R, raises the G/R and generates a coarse columnar microstructure.

Originality/value

The proposed numerical modeling approach was used to parametrically investigate the effect of LPBF parameters on the resulting microstructure. A G-R map was also developed that enables the tailoring of the as-built LPBF microstructure through solidification characteristics by tuning the process parameters.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 13