Search results

1 – 10 of 93
Article
Publication date: 16 July 2019

Chih-Hao Chen and Siva Nadarajah

This paper aims to present a dynamically adjusted deflated restarting procedure for the generalized conjugate residual method with an inner orthogonalization (GCRO) method.

Abstract

Purpose

This paper aims to present a dynamically adjusted deflated restarting procedure for the generalized conjugate residual method with an inner orthogonalization (GCRO) method.

Design/methodology/approach

The proposed method uses a GCR solver for the outer iteration and the generalized minimal residual (GMRES) with deflated restarting in the inner iteration. Approximate eigenpairs are evaluated at the end of each inner GMRES restart cycle. The approach determines the number of vectors to be deflated from the spectrum based on the number of negative Ritz values, k∗.

Findings

The authors show that the approach restores convergence to cases where GMRES with restart failed and compare the approach against standard GMRES with restarts and deflated restarting. Efficiency is demonstrated for a 2D NACA 0012 airfoil and a 3D common research model wing. In addition, numerical experiments confirm the scalability of the solver.

Originality/value

This paper proposes an extension of dynamic deflated restarting into the traditional GCRO method to improve convergence performance with a significant reduction in the memory usage. The novel deflation strategy involves selecting the number of deflated vectors per restart cycle based on the number of negative harmonic Ritz eigenpairs and defaulting to standard restarted GMRES within the inner loop if none, and restricts the deflated vectors to the smallest eigenvalues present in the modified Hessenberg matrix.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 September 2008

Mehdi Dehghan and Akbar Mohebbi

The purpose of this paper is to introduce efficient methods for solving the 2D biharmonic equation with Dirichlet boundary conditions of second kind. This equation describes the…

Abstract

Purpose

The purpose of this paper is to introduce efficient methods for solving the 2D biharmonic equation with Dirichlet boundary conditions of second kind. This equation describes the deflection of loaded plate with boundary conditions of simply supported plate kind. Also it can be derived from the calculus of variations combined with the variational principle of minimum potential energy. Because of existing fourth derivatives in this equation, introducing high‐order accurate methods need to use artificial points. Also solving the resulted linear system of equations suffers from slow convergence when iterative methods are used. This paper aims to introduce efficient methods to overcome these problems.

Design/methodology/approach

The paper considers several compact finite difference approximations that are derived on a nine‐point compact stencil using the values of the solution and its second derivatives as the unknowns. In these approximations there is no need to define special formulas near the boundaries and boundary conditions can be incorporated with these techniques. Several iterative linear systems solvers such as Krylov subspace and multigrid methods and their combination (with suitable preconditioner) have been developed to compare the efficiency of each method and to design powerful solvers.

Findings

The paper finds that the combination of compact finite difference schemes with multigrid method and Krylov iteration methods preconditioned by multigrid have excellent results for the second biharmonic equation, and that Krylov iteration methods preconditioned by multigrid are the most efficient methods.

Originality/value

The paper is of value in presenting, via some tables and figures, some numerical experiments which resulted from applying new methods on several test problems, and making comparison with conventional methods.

Details

Kybernetes, vol. 37 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 September 2004

Elizabeth A. Burroughs, Louis A. Romero, Richard B. Lehoucq and Andrew G. Salinger

Locates the onset of oscillatory instability in the fluid flow inside a differentially heated cavity with aspect ratio 2 by computing a steady‐state and analyzing the stability of…

Abstract

Locates the onset of oscillatory instability in the fluid flow inside a differentially heated cavity with aspect ratio 2 by computing a steady‐state and analyzing the stability of the system via eigenvalue approximation. Discusses the choice of parameters for the Cayley transformation so that the calculation of selected eigenvalues of the transformed system will reliably answer the question of stability. Also presents an argument that due to the symmetry of the problem, the first two unstable modes will have eigenvalues that are nearly identical, and the numerical experiments confirm this. Finally, locates a co‐dimension 2 bifurcation signifying where there is a switch in the mode of initial instability. The results were obtained using a parallel finite element CFD code (MPSalsa) along with an Arnoldi‐based eigensolver (ARPACK), a preconditioned Krylov method code for the necessary linear solves (Aztec), and a stability analysis library (LOCA).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 November 2011

Xi Chen and Yong‐Gang Cheng

The initial stiffness method has been extensively adopted for elasto‐plastic finite element analysis. The main problem associated with the initial stiffness method, however, is…

Abstract

Purpose

The initial stiffness method has been extensively adopted for elasto‐plastic finite element analysis. The main problem associated with the initial stiffness method, however, is its slow convergence, even when it is used in conjunction with acceleration techniques. The Newton‐Raphson method has a rapid convergence rate, but its implementation resorts to non‐symmetric linear solvers, and hence the memory requirement may be high. The purpose of this paper is to develop more advanced solution techniques which may overcome the above problems associated with the initial stiffness method and the Newton‐Raphson method.

Design/methodology/approach

In this work, the accelerated symmetric stiffness matrix methods, which cover the accelerated initial stiffness methods as special cases, are proposed for non‐associated plasticity. Within the computational framework for the accelerated symmetric stiffness matrix techniques, some symmetric stiffness matrix candidates are investigated and evaluated.

Findings

Numerical results indicate that for the accelerated symmetric stiffness methods, the elasto‐plastic constitutive matrix, which is constructed by mapping the yield surface of the equivalent material to the plastic potential surface, appears to be appealing. Even when combined with the Krylov iterative solver using a loose convergence criterion, they may still provide good nonlinear convergence rates.

Originality/value

Compared to the work by Sloan et al., the novelty of this study is that a symmetric stiffness matrix is proposed to be used in conjunction with acceleration schemes and it is shown to be more appealing; it is assembled from the elasto‐plastic constitutive matrix by mapping the yield surface of the equivalent material to the plastic potential surface. The advantage of combining the proposed accelerated symmetric stiffness techniques with the Krylov subspace iterative methods for large‐scale applications is also emphasized.

Article
Publication date: 5 May 2015

Guangtao Duan and Bin Chen

The purpose of this paper is to find the best solver for parallelizing particle methods based on solving Pressure Poisson Equation (PPE) by taking Moving Particle Semi-Implicit…

Abstract

Purpose

The purpose of this paper is to find the best solver for parallelizing particle methods based on solving Pressure Poisson Equation (PPE) by taking Moving Particle Semi-Implicit (MPS) method as an example because the solution for PPE is usually the most time-consuming part difficult to parallelize.

Design/methodology/approach

To find the best solver, the authors compare six Krylov solvers, namely, Conjugate Gradient method (CG), Scaled Conjugate Gradient method (SCG), Bi-Conjugate Gradient Stabilized (BiCGStab) method, Conjugate Gradient Squared (CGS) method with Symmetric Lanczos Algorithm (SLA) method and Incomplete Cholesky Conjugate Gradient method (ICCG) in terms of convergence, time consumption, parallel efficiency and memory consumption for the semi-implicit particle method. The MPS method is parallelized by the hybrid Open Multi-Processing (OpenMP)/Message Passing Interface (MPI) model. The dam-break flow and channel flow simulations are used to evaluate the performance of different solvers.

Findings

It is found that CG converges stably, runs fastest in the serial way, uses the least memory and has highest OpenMP parallel efficiency, but its MPI parallel efficiency is lower than SLA because SLA requires less synchronization than CG.

Originality/value

With all these criteria considered and weighed, the recommended parallel solver for the MPS method is CG.

Article
Publication date: 21 March 2019

Zhenhan Yao, Xiaoping Zheng, Han Yuan and Jinlong Feng

Based on the error analysis, the authors proposed a new kind of high accuracy boundary element method (BEM) (HABEM), and for the large-scale problems, the fast algorithm, such as…

Abstract

Purpose

Based on the error analysis, the authors proposed a new kind of high accuracy boundary element method (BEM) (HABEM), and for the large-scale problems, the fast algorithm, such as adaptive cross approximation (ACA) with generalized minimal residual (GMRES) is introduced to develop the high performance BEM (HPBEM). It is found that for slender beams, the stress analysis using iterative solver GMRES will difficult to converge. For the analysis of slender beams and thin structures, to enhance the efficiency of GMRES solver becomes a key problem in the development of the HPBEM. The purpose of this paper is study on the preconditioning method to solve this convergence problem, and it is started from the 2D BE analysis of slender beams.

Design/methodology/approach

The conventional sparse approximate inverse (SAI) based on adjacent nodes is modified to that based on adjacent nodes along the boundary line. In addition, the authors proposed a dual node variable merging (DNVM) preprocessing for slender thin-plate beams. As benchmark problems, the pure bending of thin-plate beam and the local stress analysis (LSA) of real thin-plate cantilever beam are applied to verify the effect of these two preconditioning method.

Findings

For the LSA of real thin-plate cantilever beams, as GMRES (m) without preconditioning applied, it is difficult to converge provided the length to height ratio greater than 50. Even with the preconditioner SAI or DNVM, it is also difficult to obtain the converged results. For the slender real beams, the iteration of GMRES (m) with SAI or DNVM stopped at wrong deformation state, and the computation failed. By changing zero initial solution to the analytical displacement solution of conventional beam theory, GMRES (m) with SAI or DNVM will not be stopped at wrong deformation state, but the stress error is still difficult to converge. However, by GMRES (m) combined with both SAI and DNVM preconditioning, the computation efficiency enhanced significantly.

Originality/value

This paper presents two preconditioners: DNVM and a modified SAI based on adjacent nodes along the boundary line of slender thin-plate beam. In the LSA, by using GMRES (m) combined with both DNVM and SAI, the computation efficiency enhanced significantly. It provides a reference for the further development of the 3D HPBEM in the LSA of real beam, plate and shell structures.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1999

H. De Gersem, D. Lahaye, S. Vandewalle and K. Hameyer

Finite element discretizations of low‐frequency, time‐harmonic magnetic problems lead to sparse, complex symmetric systems of linear equations. The question arises which Krylov

2101

Abstract

Finite element discretizations of low‐frequency, time‐harmonic magnetic problems lead to sparse, complex symmetric systems of linear equations. The question arises which Krylov subspace methods are appropriate to solve such systems. The quasi minimal residual method combines a constant amount of work and storage per iteration step with a smooth convergence history. These advantages are obtained by building a quasi minimal residual approach on top of a Lanczos process to construct the search space. Solving the complex systems by transforming them to equivalent real ones of double dimension has to be avoided as such real systems have spectra that are less favourable for the convergence of Krylov‐based methods. Numerical experiments are performed on electromagnetic engineering problems to compare the quasi minimal residual method to the bi‐conjugate gradient method and the generalized minimal residual method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1205

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2005

B. Auchmann, S. Kurz, O. Rain and S. Russenschuck

To introduce a Whitney‐element based coupling of the Finite Element Method (FEM) and the Boundary Element Method (BEM); to discuss the algebraic properties of the resulting system…

1409

Abstract

Purpose

To introduce a Whitney‐element based coupling of the Finite Element Method (FEM) and the Boundary Element Method (BEM); to discuss the algebraic properties of the resulting system and propose solver strategies.

Design/methodology/approach

The FEM is interpreted in the framework of the theory of discrete electromagnetism (DEM). The BEM formulation is given in a DEM‐compatible notation. This allows for a physical interpretation of the algebraic properties of the resulting BEM‐FEM system matrix. To these ends we give a concise introduction to the mathematical concepts of DEM.

Findings

Although the BEM‐FEM system matrix is not symmetric, its kernel is equivalent to the kernel of its transpose. This surprising finding allows for the use of two solution techniques: regularization or an adapted GMRES solver.

Research limitations/implications

The programming of the proposed techniques is a work in progress. The numerical results to support the presented theory are limited to a small number of test cases.

Practical implications

The paper will help to improve the understanding of the topological and geometrical implications in the algebraic structure of the BEM‐FEM coupling.

Originality/value

Several original concepts are presented: a new interpretation of the FEM boundary term leads to an intuitive understanding of the coupling of BEM and FEM. The adapted GMRES solver allows for an accurate solution of a singular, unsymetric system with a right‐hand side that is not in the image of the matrix. The issue of a grid‐transfer matrix is briefly mentioned.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 July 2021

Abhishek Kumar Singh and Krishna Mohan Singh

The work presents a novel implementation of the generalized minimum residual (GMRES) solver in conjunction with the interpolating meshless local Petrov–Galerkin (MLPG) method to…

Abstract

Purpose

The work presents a novel implementation of the generalized minimum residual (GMRES) solver in conjunction with the interpolating meshless local Petrov–Galerkin (MLPG) method to solve steady-state heat conduction in 2-D as well as in 3-D domains.

Design/methodology/approach

The restarted version of the GMRES solver (with and without preconditioner) is applied to solve an asymmetric system of equations, arising due to the interpolating MLPG formulation. Its performance is compared with the biconjugate gradient stabilized (BiCGSTAB) solver on the basis of computation time and convergence behaviour. Jacobi and successive over-relaxation (SOR) methods are used as the preconditioners in both the solvers.

Findings

The results show that the GMRES solver outperforms the BiCGSTAB solver in terms of smoothness of convergence behaviour, while performs slightly better than the BiCGSTAB method in terms of Central processing Unit (CPU) time.

Originality/value

MLPG formulation leads to a non-symmetric system of algebraic equations. Iterative methods such as GMRES and BiCGSTAB methods are required for its solution for large-scale problems. This work presents the use of GMRES solver with the MLPG method for the very first time.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 93