Search results

1 – 10 of 18
Article
Publication date: 31 October 2022

Seyedeh Mehrangar Hosseini, Behnaz Bahadori and Shahram Charkhan

The purpose of this study is to identify the situation of spatial inequality in the residential system of Tehran city in terms of housing prices in the year 2021 and to examine…

Abstract

Purpose

The purpose of this study is to identify the situation of spatial inequality in the residential system of Tehran city in terms of housing prices in the year 2021 and to examine its changes over time (1991–2021).

Design/methodology/approach

In terms of purpose, this study is applied research and has used a descriptive-analytical method. The statistical population of this research is the residential units in Tehran city 2021. The average per square meter of a residential unit in the level of city neighborhoods was entered in the geographical information system (GIS) in 2021. Moran’s spatial autocorrelation method, map cluster analysis (hot and cold spots) and Kriging interpolation have been used for spatial analysis of points. Then, the change in spatial inequality in the residential system of Tehran city has been studied and measured based on the price per square meter of a residential unit for 30 years in the 22 districts of Tehran by using statistical clustering based on distance with standard deviation.

Findings

The result of spatial autocorrelation analysis with a score of 0.873872 and a p-value equal to 0.000000 indicates a cluster distribution of housing prices throughout the city. The results of hot spots show that the highest concentration of hot spots (the highest price) is in the northern part of the city, and the highest concentration of cold spots (the lowest price) is in the southern part of Tehran city. Calculating the area and estimating the quantitative values of data-free points by the use of the Kriging interpolation method indicates that 9.95% of Tehran’s area has a price of less than US$800, 17.68% of it has a price of US$800 to US$1,200, 25.40% has the price of US$1,200 to US$1,600, 17.61% has the price of US$1,600 to US$2,000, 9.54% has the price of US$2,000 to US$2,200, 6.69% has the price of US$2,200 to US$2,600, 5.38% has the price of US$2,600 to US$2,800, 4.59% has the price of US$2,800 to US$3,200 and finally, the 3.16% has a price more than US$3,200. The highest price concentration (above US$3,200) is in five neighborhoods (Zafaranieh, Mahmoudieh, Tajrish, Bagh-Ferdows and Hesar Bou-Ali). The findings from the study of changes in housing prices in the period (1991–2021) indicate that the southern part of Tehran has grown slightly compared to the average range, and the western part of Tehran, which includes the 21st and 22nd regions with much more growth than the average price.

Originality/value

There is massive inequality in housing prices in different areas and neighborhoods of Tehran city in 2021. In the period under study, spatial inequality in the residential system of Tehran intensified. The considerable increase in housing prices in the housing market of Tehran has made this sector a commodity, intensifying the inequality between owners and non-owners. This increase in housing price inequality has caused an increase in the informal living for the population of the southern part. This population is experiencing a living situation that contrasts with the urban plans and policies.

Details

International Journal of Housing Markets and Analysis, vol. 17 no. 2
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 30 January 2024

Rebecca Restle, Marcelo Cajias and Anna Knoppik

The purpose of this paper is to explore the significance impact of air quality as a contributing factor on residential property rents by applying geo-informatics to economic…

18

Abstract

Purpose

The purpose of this paper is to explore the significance impact of air quality as a contributing factor on residential property rents by applying geo-informatics to economic issues. Since air pollution poses a severe health threat, city residents should have a right to know about the (invisible) hazards they are exposed to.

Design/methodology/approach

Within spatial-temporal modeling of air pollutants in Berlin, Germany, three interpolation techniques are tested. The most suitable one is selected to create seasonal maps for 2018 and 2021 with pollution concentrations for particulate matter values and nitrogen dioxide for each 1,000 m2 cell within the administrative boundaries. Based on the evaluated pollution particulate matter values, which are used as additional variables for semi-parametric regressions the impact of the air quality on rents is estimated.

Findings

The findings reveal a compelling association between air quality and the economic aspect of the residential real estate market, with noteworthy implications for both tenants and property investors. The relationship between air pollution variables and rents is statistically significant. However, there is only a “willingness-to- pay” for low particulate matter values, but not for nitrogen dioxide concentrations. With good air quality, residents in Berlin are willing to pay a higher rent (3%).

Practical implications

These results suggest that a “marginal willingness-to-pay” occurs in a German city. The research underscores the multifaceted impact of air quality on the residential rental market in Berlin. The evidence supports the notion that a cleaner environment not only benefits human health and the planet but also contributes significantly to the economic bottom line of property investors.

Originality/value

The paper has a unique data engineering approach. It collects spatiotemporal data from network of state-certified measuring sites to create an index of air pollution. This spatial information is merged with residential listings. Afterward non-linear regression models are estimated.

Details

Journal of Property Investment & Finance, vol. 42 no. 2
Type: Research Article
ISSN: 1463-578X

Keywords

Article
Publication date: 15 April 2024

Seyed Abbas Rajaei, Afshin Mottaghi, Hussein Elhaei Sahar and Behnaz Bahadori

This study aims to investigate the spatial distribution of housing prices and identify the affecting factors (independent variable) on the cost of residential units (dependent…

Abstract

Purpose

This study aims to investigate the spatial distribution of housing prices and identify the affecting factors (independent variable) on the cost of residential units (dependent variable).

Design/methodology/approach

The method of the present study is descriptive-analytical and has an applied purpose. The used statistical population in this study is the residential units’ price in Tehran in 2021. For this purpose, the average per square meter of residential units in the city neighborhoods was entered in the geographical information system. Two techniques of ordinary least squares regression and geographically weighted regression have been used to analyze housing prices and modeling. Then, the results of the ordinary least squares regression and geographically weighted regression models were compared by using the housing price interpolation map predicted in each model and the accurate housing price interpolation map.

Findings

Based on the results, the ordinary least squares regression model has poorly modeled housing prices in the study area. The results of the geographically weighted regression model show that the variables (access rate to sports fields, distance from gas station and water station) have a direct and significant effect. Still, the variable (distance from fault) has a non-significant impact on increasing housing prices at a city level. In addition, to identify the affecting variables of housing prices, the results confirm the desirability of the geographically weighted regression technique in terms of accuracy compared to the ordinary least squares regression technique in explaining housing prices. The results of this study indicate that the housing prices in Tehran are affected by the access level to urban services and facilities.

Originality/value

Identifying factors affecting housing prices helps create sustainable housing in Tehran. Building sustainable housing represents spending less energy during the construction process together with the utilization phase, which ultimately provides housing at an acceptable price for all income deciles. In housing construction, the more you consider the sustainable housing principles, the more sustainable housing you provide and you take a step toward sustainable development. Therefore, sustainable housing is an important planning factor for local authorities and developers. As a result, it is necessary to institutionalize an integrated vision based on the concepts of sustainable development in the field of housing in the Tehran metropolis.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

142

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Book part
Publication date: 16 January 2024

Ayodeji E. Oke and Seyi S. Stephen

Abstract

Details

A Digital Path to Sustainable Infrastructure Management
Type: Book
ISBN: 978-1-83797-703-1

Book part
Publication date: 16 January 2024

Ayodeji E. Oke and Seyi S. Stephen

This chapter presented cognitive radio networks in construction. The construction industry requires an efficient bandwidth of wireless technology for effectiveness without delay…

Abstract

This chapter presented cognitive radio networks in construction. The construction industry requires an efficient bandwidth of wireless technology for effectiveness without delay. The persistence of challenges with the investment in third generation is a great concern, and this chapter identified investing in fifth generation (as an alternative) to enlarge bandwidth for better effectiveness that is capable of dealing with unavailable or scarcity of radio spectrum. The application of fifth generation will permit efficient utilisation of the radio spectrum by the primary and secondary users to detect the spectrum parameters which will highlight the direct and adequate interaction with the radio channel. This chapter further considered the usage of this technology as it relates to permitting sharing of sense in the spectrum.

Content available
Article
Publication date: 22 February 2024

Richard Reed

Abstract

Details

International Journal of Housing Markets and Analysis, vol. 17 no. 2
Type: Research Article
ISSN: 1753-8270

Article
Publication date: 5 April 2024

Felipe Sales Nogueira, João Luiz Junho Pereira and Sebastião Simões Cunha Jr

This study aims to apply for the first time in literature a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg…

13

Abstract

Purpose

This study aims to apply for the first time in literature a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg algorithm and test the sensors' configuration found in a delamination identification case study.

Design/methodology/approach

This work aims to study the damage identification in an aircraft wing using the Lichtenberg and multi-objective Lichtenberg algorithms. The former is used to identify damages, while the last is associated with feature selection techniques to perform the first sensor placement optimization (SPO) methodology with variable sensor number. It is applied aiming for the largest amount of information about using the most used modal metrics in the literature and the smallest sensor number at the same time.

Findings

The proposed method was not only able to find a sensor configuration for each sensor number and modal metric but also found one that had full accuracy in identifying delamination location and severity considering triaxial modal displacements and minimal sensor number for all wing sections.

Originality/value

This study demonstrates for the first time in the literature how the most used modal metrics vary with the sensor number for an aircraft wing using a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg algorithm.

Article
Publication date: 22 March 2024

Shahin Alipour Bonab, Alireza Sadeghi and Mohammad Yazdani-Asrami

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are…

Abstract

Purpose

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are used to dampen the electric field imposed on the insulator. The purpose of this study is to present a fast and intelligent surrogate model for determination of the electric field imposed on the surface of a 120 kV composite insulator, in presence of the Corona ring.

Design/methodology/approach

Usually, the structural design parameters of the Corona ring are selected through an optimization procedure combined with some numerical simulations such as finite element method (FEM). These methods are slow and computationally expensive and thus, extremely reducing the speed of optimization problems. In this paper, a novel surrogate model was proposed that could calculate the maximum electric field imposed on a ceramic insulator in a 120 kV line. The surrogate model was created based on the different scenarios of height, radius and inner radius of the Corona ring, as the inputs of the model, while the maximum electric field on the body of the insulator was considered as the output.

Findings

The proposed model was based on artificial intelligence techniques that have high accuracy and low computational time. Three methods were used here to develop the AI-based surrogate model, namely, Cascade forward neural network (CFNN), support vector regression and K-nearest neighbors regression. The results indicated that the CFNN has the highest accuracy among these methods with 99.81% R-squared and only 0.045468 root mean squared error while the testing time is less than 10 ms.

Originality/value

To the best of the authors’ knowledge, for the first time, a surrogate method is proposed for the prediction of the maximum electric field imposed on the high voltage insulators in the presence Corona ring which is faster than any conventional finite element method.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 18