Search results

1 – 10 of 119
Article
Publication date: 5 March 2024

Azita Asayesh and Fatemeh Kolahi Mahmoodi

Pilling and abrasion resistance are two of the most important mechanical properties of the fabric that influence the appearance and performance of the fabric, particularly in the…

Abstract

Purpose

Pilling and abrasion resistance are two of the most important mechanical properties of the fabric that influence the appearance and performance of the fabric, particularly in the case of knitted fabrics. Since, these fabric features are affected by fabric structure the aim of present research is to investigate how utilizing miss stitches and tuck stitches in the fabric structure for design purposes will influence the pilling and abrasion resistance of interlock weft-knitted fabrics.

Design/methodology/approach

In this research, interlock fabrics with different number of miss or tuck stitches on successive Wales were produced and pilling performance and abrasion resistance of the fabrics were investigated.

Findings

The results revealed that increasing the number of miss/tuck stitches on successive Wales decreases the abrasion resistance and enhances the pilling tendency of the fabric. The presence of miss/tuck stitches on both sides of the fabric improves the abrasion resistance and pilling performance of the fabric compared to fabrics containing these stitches on one side of the fabric. Furthermore, the fabric resistance against abrasion and pilling is higher in fabrics consisting of miss stitches compared to fabrics consisting of tuck stitches.

Originality/value

The use of tuck and miss stitches in designing the weft-knitted fabrics is a common method for producing fabrics with variety of knit patterns. Since pilling and abrasion resistance of the fabric influence on its appearance and performance, and none of the previous research studied the pilling and abrasion resistance of interlock-knitted fabrics from the point of presence of tuck and miss stitches on successive Wales of the fabric, this subject has been surveyed in the present research.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 September 2023

Bilian Cheng, Gaoming Jiang, Junjie Zhao and Bingxian Li

The purpose of this paper is to conveniently and accurately design partial knitting knitted fabrics based on matrix transformation.

Abstract

Purpose

The purpose of this paper is to conveniently and accurately design partial knitting knitted fabrics based on matrix transformation.

Design/methodology/approach

Using mathematical modeling, the pattern diagram block matrix and process design matrix of partial knitting knitted fabrics are established, and the process knitting diagram with parameter information is generated. Based on the establishment of the mathematical model of the process knitting diagram, a loop deformation method based on three-dimensional (3D) coordinate point matrix transformation is proposed.

Findings

The matrix transformation method can provide a suitable deformed loop mode for partial knitting knitted fabrics and helps to generate a 3D modeling diagram conveniently.

Originality/value

This paper proposed a method of design and modeling of partial knitting knitted fabric based on matrix transformation. Taking the 3D modeling effect of conventional partial knitting as an example to test the modeling method, the results show that after matrix transformation, the loop model can realize the rapid transformation and calculation of the coordinates of the control point and generate a 3D modeling diagram.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 January 2024

Haisang Liu, Gaoming Jiang and Zhijia Dong

The warp-knitted fully-formed shorts are one kind of fully-formed garments knitted by a double-needle bar machine, which is widely used in the medical field. Because of its…

Abstract

Purpose

The warp-knitted fully-formed shorts are one kind of fully-formed garments knitted by a double-needle bar machine, which is widely used in the medical field. Because of its distinctive forming method, designers are unable to grasp the final effect of the product accurately during the design process. The purpose of this paper is to clarify a visible 3D simulation method in the design process along with the knitting method and structure characteristics, which is reflected in the final product effect.

Design/methodology/approach

This study introduces a simulation process for warp-knitted fully-formed fabric from an input 3D surface model group. Stitch mesh models are established according to the garment structure and the triangle index of the garment model that swchape-controlling points belong to is calculated. The garment model group includes a 2D plate and a 3D model, between which there is a space coordinate transformation relationship. The study makes use of the 3D tubes to connect the coordinate points in order and render the tubes in real yarn colors. The effects of two parameters, radial segment and tubular segment, are analyzed and decided to obtain a fine surface within a reasonable rendering time.

Findings

A stereoscopic simulation process from flat fabric to 3D product is realized using computer graphics technology. The warp-knitted fully-formed short is shown during the design process within a short time by setting the rendering parameters of tubular segments (ts = 125) and radial segments (rs = 6).

Originality/value

Visual simulation for the shorts provides a time-saving and resource-saving method for structure design and parameter modification before knitting. There is no need to knit samples repeatedly to satisfy demand, which indicates that it is a saver of time and resources.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 November 2023

Fareha Asim, Farhana Naeem and Shenela Naqvi

Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This…

Abstract

Purpose

Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This study aims to develop reusable and biodegradable mask from 100% regenerated bamboo or/and its blend. Selection of natural and regenerated textile materials is to minimize generation of solid waste. This attempt will eventually protect our earth by minimizing or better discontinuing the production of the disposable nonbiodegradable face masks available worldwide.

Design/methodology/approach

Hundred percent regenerated bamboo and 50:50 bamboo:cotton were selected to knit plain and interlock fabrics for manufacturing of reusable sustainable face masks. A 23 32-mixed-level factorial design was applied to study the effect of liquor ratio and temperatures, fabric structure, blend ratios and finishes at three different levels. Model 23 32 has two factors (liquor ratio and temperatures) at three levels and three factors (fabric structure, blend ratios and type of finish) at two levels. Knitted fabrics were then applied with antibacterial finishes; sanitized T99-19 and sanitized T27-22, separately at three different liquor ratios (1:10, 1:12 and 1:15) and temperatures (45, 55 and 65 °C) via exhaust method. After completing processing, fabric thickness, pilling resistance, dimensional stability, bursting strength, Berger whiteness index, air permeability and antibacterial properties of each trial were evaluated using standard test procedures.

Findings

Selected fabrics treated either by sanitized T27 or sanitized T99 in a liquor ratio of 1:15 against 65 °C, showed excellent bacteriostatic/bactericidal activity. However, 100% regenerated bamboo interlock knitted fabric treated with sanitized T99 in a liquor ratio of 1:15 at 65 °C has the most desired values of dimensional stability, pilling resistance, Berger whiteness, fabric thickness, air permeability and bursting strength which made it the best for the manufacturing of the masks. Reusable mask is comprised of three layers in which the first and the third layers were of selected 100% regenerated bamboo fabric while a PM2.5 filter was inserted in between. Bacterial filtration efficiency, particle filtration efficiency, biocompatibility and microbial cleanliness will be evaluated in future, to compare the performance of proposed reusable and biodegradable face mask with N95 masks and other fabric masks available commercially.

Originality/value

This study resulted in a development of reusable eco-friendly facemask which was not attempted by the preceding investigations. Outcomes of this work pave the way for a greener and safer earth by using easily obtainable regenerated bamboo fabrics, antibacterial finishes and knitted structures.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 March 2022

Geetha Margret Soundri, Kavitha S. and Senthil Kumar B.

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric…

Abstract

Purpose

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric structure and the finishing treatment are the key parameters that influenced the performance of the clothing meant for sportswear. This study aims to investigate the effect of fibre blending and structural tightness factors on bi-layer sport fabric's dimensional, moisture management and thermal properties.

Design/methodology/approach

In this study, 12 different bi-layer inter-lock fabrics were produced. Polyester filament (120 Denier) yarn was fed to form the backside of the fabric, and the face side was varied with cotton, modal, wool and soya spun yarns of 30sNe. Three different types of structural tightness factors were considered, such as low, medium and high were taken for sample development. The assessment towards dimensional, moisture management and thermal properties was carried out on all the samples.

Findings

The polyester-modal blend with a high tightness factor has shown maximum overall moisture management capability (OMMC) values of 0.73 and air permeability of 205.3 cm3/cm2/s. The same sample has shown comparatively higher thermal conductivity of 61.72 × 10–3 W m-1 °C-1(Under compression state) and 58.45 × 10–3 W m-1 °C-1 (under recovery state). In the case of surface roughness is concerned, polyester-modal blends have shown the lowest surface roughness, surface roughness amplitude and surface friction co-efficient. Among the selected fibre combinations, the overall comfort level of polyester-modal bi-layer knitted structure with a higher tightness factor is appreciable. Polyester-modal is more suitable for active sportswear among the four fiber blend combinations.

Research limitations/implications

The outcome of this study will help to gain a better understanding of fibre blends, structural tightness factor and other process specifications for the development of bi-layer fabric for active sportswear applications. The dynamic functional testing methods (Moisture management and Thermal properties) were carried out to simulate the actual wearing environment of the sports clothing. This study will create a new scope of research opportunities in the field of bi-layer sports textiles.

Originality/value

This study was conducted to explore the influence of fibre blend and structural tightness factor on the comfort level of sportswear and to find the suitable fibre blend for active sportswear clothing.

Details

Research Journal of Textile and Apparel, vol. 27 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 August 2022

Ngan Yi Kitty Lam, Jeanne Tan, Anne Toomey and Ka Chun Jimmy Cheuk

This paper aims to investigate how different knitted structures affect the illuminative effect of polymeric optical fibres (POFs).

147

Abstract

Purpose

This paper aims to investigate how different knitted structures affect the illuminative effect of polymeric optical fibres (POFs).

Design/methodology/approach

Knit prototypes were constructed using a 7-gauge industrial hand flat knitting machine. The textile prototype swatches developed in this study tested POF illumination in three types of knitting structures: intervallic knit and float stitch structures; POF inlaid into double plain and full cardigan structures; and double plain and partial knitting structures. The illuminative effects of the POFs in seven prototype swatches were analysed and compared.

Findings

It is possible to use an industrial hand flat knitting machine to knit POFs. Longer floats expose more POFs, which boosts illumination but limits the textile’s horizontal stretchability. The openness of the full cardigan structure maximises POF exposure and contributes to even illumination. The partial knitting in different sections achieves the most complete physical integration of POFs into the knitted textiles but constrains the horizontal stretchability of the textiles.

Practical implications

The integration of POFs into knitted textiles provides a functional illuminative effect. Applications include but are not limited to fashion, architecture and interior design.

Originality/value

This study is novel, as it investigates new POF knitted textiles with different loop structures. This study examines how knit stitches affect POFs in intervallic knit and float stitch, inlaid POF double knit, double plain and partial knit and the illuminative effects of the knitted textile.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 8 April 2024

Anita Meena

This paper aims to examine and compare the export performance and competitiveness of Indian and Chinese textile and clothing industry in post-multifibre arrangement (MFA) era.

Abstract

Purpose

This paper aims to examine and compare the export performance and competitiveness of Indian and Chinese textile and clothing industry in post-multifibre arrangement (MFA) era.

Design/methodology/approach

Balassa’s revealed comparative advantage Index is used to assess the competitiveness of Indian and Chinese textile and clothing exports.

Findings

The results indicate that China’s textiles and garments sector holds a greater proportion of the global market compared with India. India has a robust comparative advantage in silk, carpets and cotton post-MFA. Vegetable textile fibers, paper yarn and woven fabrics of paper yarn are also competitive. China had a strong comparative advantage in silk and fabrics; special woven fabrics, tafted textile fabrics, lace, tapestries, trimmings and embroidery in 2005. China also recorded comparative advantage in silk, man-made filaments: strip and the like of man-made textile materials, fabrics; special woven fabrics, tafted textile fabrics, lace, tapestries, trimmings and embroidery and fabrics; knitted or crocheted in 2021.

Research limitations/implications

This study’s results and recommendations could assist the Indian and Chinese Governments develop policies to upgrade their garment industries.

Originality/value

Though vast literature reviews are available for textile and apparel export performance in India and China separately, there are few studies on comparisons. This study is a significant attempt to evaluate India and China’s competitiveness in the global market.

Details

Vilakshan - XIMB Journal of Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0973-1954

Keywords

Article
Publication date: 14 November 2023

S. Raja Balasaraswathi and Jonalee D. Bajpai

Ultrasonic welding is an emerging apparel manufacturing technique. However, the applications are widely explored in the field of technical textiles, with less exploration in the…

Abstract

Purpose

Ultrasonic welding is an emerging apparel manufacturing technique. However, the applications are widely explored in the field of technical textiles, with less exploration in the apparel endues. The purpose of this study is to explore the application of ultrasonic welding in apparel by analyzing the impacts of different parameters.

Design/methodology/approach

This study analyzed the influence of ultrasonic welding parameters, including pressure, welding speed and ultrasonic power on the seam performances (seam strength, seam bursting strength, seam thickness and seam stiffness). The parameters are optimized using Box–Behnken experimental design to achieve better seam performances.

Findings

The properties of ultrasonic seams are influenced by welding and fabric properties. Ultrasonically welded seams showed better performances in the case of comfort properties of seams, whereas the functional properties are lesser compared to conventional seams.

Originality/value

The findings of the research clearly outline the level of influence of different parameters on the performance of the ultrasonically welded seams in knitted fabrics, which can greatly help in applying ultrasonic welding manufacturing methods in apparel manufacturing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 October 2023

Jianping Wang, Jinzhu Shen, Xiaofeng Yao and Fan Zhang

The purpose of this paper is to gain an in-depth understanding into the research progress, hot spots and future trends in smart gripping technology in the field of apparel smart…

Abstract

Purpose

The purpose of this paper is to gain an in-depth understanding into the research progress, hot spots and future trends in smart gripping technology in the field of apparel smart manufacturing.

Design/methodology/approach

This work scrutinised the current research status of the five automatic grasping methods for garment fabrics including the pneumatic suction grasping, the electrostatic grasping, the intrusive grasping and the dexterous grasping. Specifically, the principles, characteristics, main devices and the impact on garment production were discussed.

Findings

In particular, soft finger of the dexterous grasping method has good flexibility and adaptability in the process of fabric grasping, which provides a new solution for garment production automation. Up to now, the reviewed method in general exhibit good grasping speed, high grasping stability and flat grasping process. However, in the face of complex fabric materials which are thin and flexible and do not return their original shapes when deformed in practical applications, the gripper for automatic fabric grasping need new technological breakthroughs in the positioning accuracy, grab efficiency and flexible grasping.

Originality/value

The outcomes offered an overview of the research status and future trends of the automatic grasping methods for garment fabrics in the field of apparel intelligent manufacturing. It could not only provide scholars with convenience in identifying research hot spots and building potential cooperation in the follow-up research but also assist beginners in searching core scholars and literature of great significance.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 March 2024

Saloni Purandare and Chunhui Xiang

Firefighter Personal Protective Equipment (PPE) is the only barrier between the firefighter and hazardous environment. Gloves are a crucial component of the multi-component PPE…

Abstract

Purpose

Firefighter Personal Protective Equipment (PPE) is the only barrier between the firefighter and hazardous environment. Gloves are a crucial component of the multi-component PPE. Over time the gloves have reduced the intensity of hand injuries, yet further improvement in terms of material selection and glove design is required to strike the balance between protection and comfort. Focusing on the material aspect, the purpose of this study is to present literature analysis on material selection and testing for firefighter gloves.

Design/methodology/approach

The study conducted a literature analysis on material selection and characterization of firefighter PPE. The review summarizes and evaluates past work addressing the characterization of firefighter gloves in accordance with NFPA 1971 requirements and points out found research gaps to aid with foundation of future research.

Findings

The study summarizes several research works to inform readers about the material selection and characterization of firefighter gloves. Based on the analyzed literature, the study resulted in material specification sheets for firefighter gloves. The developed material specification sheets provide information in terms of crucial material properties to be incorporated for accurate functioning of firefighter gloves, testing methods to validate those material properties and materials from analyzed literature exhibiting desired properties.

Originality/value

With large research addressing firefighter PPE, only limited studies focus specifically on gloves. Thus, this study provides a literature analysis covering material selection and testing for gloves. A consolidated firefighter gloves material specification document, which does not appear to be available in the literature, will provide a foundation for the development and characterization of firefighter gloves to better serve the functions along with ensuring user comfort.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 119