Search results

1 – 10 of over 1000
Article
Publication date: 1 March 2011

Simona Jevšnik, Zoran Stjepanovič, Lea Heikinheimo and Karl Gotlih

Enzyme treatment technologies are frequently applied in textile processing for the modification of fabric handle appearance and other surface characteristics in regard to cotton…

Abstract

Purpose

Enzyme treatment technologies are frequently applied in textile processing for the modification of fabric handle appearance and other surface characteristics in regard to cotton and cotton blended fabrics. The purpose of this paper is to understand the impact of enzyme treatments on fabric preparation, dyeing, and finishing processes of woven fabrics. In particular, certain mechanical and surface properties of 100 percent cotton interlock knitted fabrics after treatment with a cellulase enzyme.

Design/methodology/approach

Interlock knitted fabrics were used for this research. These cotton fabrics were treated with experimental Trichoderma reesei cellulases containing different cellulase profiles and treatment was carried out under laboratory conditions. The effects of cellulase treatment on weft knitted fabric regarding mechanical and surface properties were evaluated using the KES‐FB Kawabata evaluation system. The influence of enzyme treatments, friction, and geometrical roughness on the face and reverse side of interlock knitted fabrics were discussed in comparison with untreated interlock knitted fabric.

Findings

After each of the enzyme treatments, the interlock knitted fabrics lost part of their weight and, therefore, they became thinner. Furthermore, the extension properties become higher in both directions with regard to the untreated knitted fabric for all used enzymes and carried out treatments.

Originality/value

The paper usefully analyzes changes in the extension and surface properties of enzyme‐treated interlock knitted fabrics by investigating the influence of whole or enriched endoglucanases celullases of Trihoderma reesei under different treatment conditions.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2000

M.N. Sun and K.P.S. Cheng

The fine gauge plain weft knitted fabrics knitted from cotton Sirospun1 yarns are more durable and suitable for summer wear. It was found that they have considerable bursting…

Abstract

The fine gauge plain weft knitted fabrics knitted from cotton Sirospun1 yarns are more durable and suitable for summer wear. It was found that they have considerable bursting strength, superior abrasion resistance, superior pilling resistance, greater air resistance, cooler hand‐feel and greater thermal conductivity than the fabrics knitted from two‐fold yarns. The plain weft knitted fabric composed of coarser Sirospun1 yarn is also better in terms of hand‐feel measured by KES instruments.

Details

International Journal of Clothing Science and Technology, vol. 12 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 May 2014

E. Perumalsamy, J.C. Sakthivel and N. Anbumani

The purpose of this paper is to elucidate the stress-strain relationships of single-jersey knitted fabrics from uniaxial tensile test followed by deformation behavior using finite…

Abstract

Purpose

The purpose of this paper is to elucidate the stress-strain relationships of single-jersey knitted fabrics from uniaxial tensile test followed by deformation behavior using finite element analysis. In order to elaborate the study, high, medium and low tightness knitted fabrics were selected and deformation of fabrics analyzed in course, wales and bias directions (0, 45 and 90 degrees).

Design/methodology/approach

This study focussed on uni-axial tensile test of produced test samples using Instron 6021 tester and a development of single-jersey knitted loop model using Auto Desk Inventor software (ADI). The knitted fabric material properties and knitted loop model was imported to ANSYS 12.0 software.

Findings

Due to structural changes the tightness and thickness of knitted fabric decreases with increase in loop length The tensile result shows maximum breaking strength at course direction (13.43 kg f/mm2 at 2.7 mm) and maximum extension at wales direction (165.77 kg f/mm2 at 3.3 mm). When the loop length increases, the elongation of fabrics increased and load carrying capacity of fabrics reduced. The Young's modulus, Poisson's ratio and shear modulus of fabrics reduced with increase in loop length. The deformation of fabrics increased with increase in loop length. The increase in loop length gives large amount of structural changes and it is due to slacking or jamming in loops and loosening in dimensions. When comparing the deformation results, the variation within the fabric is higher and structural damage little more when increasing the loop length of the fabric.

Originality/value

From ANOVA test, stress and strain distribution was statistically significant among course, wales and bias directions at 95 percent confidence level. The values got from Instron test indicates that testing direction can alter its deformation. In deformation analysis, comparing both experimental and prediction, high amount of structural changes observed in wales direction. The used tetrahedral elements can be used for contact analysis with high accuracy. For non-linear problems, consistent approach was proposed which makes the sense to compare with experimental methods. The proposed model will make possible developments and the preliminary validation tests shows good agreement with experimental data.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 March 2010

Takako Inoue, Akira Nakayama and Masako Niwa

The purpose of this paper is to analyze the relationship between the warm/cool feeling of the heat properties of fabrics and the subjective evaluation of the quality of ladies'…

Abstract

Purpose

The purpose of this paper is to analyze the relationship between the warm/cool feeling of the heat properties of fabrics and the subjective evaluation of the quality of ladies' garment fabrics.

Design/methodology/approach

Regression analysis is conducted using stepwise block regression applied to the expert judges' judgment value total hand value, using six blocks of the mechanical properties and one block of the initial maximum values qmax of the heat flux of the heat properties of spring and summer tailored‐type jacket fabrics, as the seven blocks of fabric properties, including the secondary term of each property.

Findings

The results of the regression analysis show that the qmax values do not affect the subjective evaluation of the quality of spring and summer tailored‐type jacket fabrics. The results of the regression analysis of ladies' knitted fabric properties applied to the subjective evaluation value have confirmed that the qmax values affect the subjective evaluation of the quality of ladies' knitted fabrics.

Originality/value

This paper usefully describes the relationship between the warm/cool feeling of fabric and the subjective evaluation of the quality of ladies' knitted fabrics.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 October 2018

Virginija Daukantiene and Giedre Vadeike

The purpose of this paper is to evaluate the air permeability of knitted fabrics containing elastane fibre and their seams applying both the new approach based on fabric thickness…

Abstract

Purpose

The purpose of this paper is to evaluate the air permeability of knitted fabrics containing elastane fibre and their seams applying both the new approach based on fabric thickness measurement at different pressures and standard method.

Design/methodology/approach

Investigations were performed with commercially available eight polyester knitted fabrics containing different elastane yarn proportion. Bonded seams were laminated applying the urethane thermoplastic adhesive film of 0.175 mm thickness. Bonds were laminated by heat at 5.6 kPa pressure applying pressing device GTK DEA 25 R at 140°C temperature for 40 s duration. Sewn seams were assembled with 607 covering chain stitch applying 5.0 stitches per cm density and 512 overedge chain stitch applying 5.0 stitches per cm density. Specimens without and with the seams were conditioned in standard atmosphere conditions according to the standard LST EN ISO 139 before air permeability testing according to the standard LST EN ISO 9237. Standard thickness of the investigated knitted fabric was determined according to the standard EN ISO 5084. It is known from literature that the porosity is dominant factor influencing the air permeability of knitted fabrics. Therefore, the assumption was made that due to fabric porosity knitted fabric thickness being measured at different pressures also may differ. Thus, the permeability property may also be related to the difference between fabric’s thicknesses being measured under different pressures which may be applied with different material thickness gauges.

Findings

There was shown that fabric assemblies make the significant influence on the textile permeability to air. The results obtained indicate that the air permeability of the investigated knitted fabrics depends not only on their structure parameters but also on the fabric seam type. Air permeability of the specimens with the seams was lower than one of specimens without the seams. The highest decrease in permeability which ranged from 19.9 per cent up to 60.0 per cent was determined for the bonds. Fabric specimens with 607 covering chain stitch seam were in the second place with regard to the previously considered parameter. And, their permeability was decreased from 0.6 per cent up to 52.6 per cent. Changes in the air permeability of the specimens with 512 overedge chain stitch seam were lowest in the range of investigated assemblies. Based on the determined results, it was concluded that the thickness difference of the specimens with and without seams measured at different pressures is related to fabric porosity which makes the significant influence on the air permeability.

Practical implications

The samples of investigated fabrics were taken from the two companies which manufactures leisure clothing and sportswear such as skiing or swimming costumes, etc. Thus, the obtained investigation results are significant not only for clothing science but also leads the improvement of clothing quality in fashion industry.

Originality/value

Assuring the comfort of the human body is one of the most important functions of clothing, especially of sportswear and leisure wear. Knitted fabrics should not only be elastic, but also have high air permeability for easily transmit of the perspiration from the skin to the atmosphere, thus making the wearer to feel comfortable. In this research, the air permeability of commercially available polyester knitted fabrics containing different amount of elastane was investigated and the influence of fabric assemblies on the air permeability property was evaluated. A new approach based on the fabric thickness measurement at different pressures and the standard methods for the evaluation of air permeability were used.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 July 2020

Jialu Liang, Honglian Cong, Zhe Gao, Aijun Zhang and Zhijia Dong

The weft-knitted two-side jacquard fabric has the characteristics of complicated design principle and hard technical design. The purpose of this paper is to realize the…

Abstract

Purpose

The weft-knitted two-side jacquard fabric has the characteristics of complicated design principle and hard technical design. The purpose of this paper is to realize the computer-aided design of weft-knitted two-side jacquard fabric, and provide a certain reference for the development of this type of fabric.

Design/methodology/approach

The weft-knitted two-side jacquard fabric is divided into weft-knitted two-side similar pattern jacquard fabric and weft-knitted two-side independent pattern jacquard fabric. In order to achieve the purpose of this study, firstly, the structural characteristic of weft-knitted two-side jacquard fabric is analyzed. Then, the design principle of weft-knitted two-side jacquard fabric is studied. Next, the technical model of weft-knitted two-side jacquard fabric is established. Finally, the CAD flow chart of weft-knitted two-side jacquard fabric is proposed to realize the rapid product development.

Findings

Based on the above method, through the development example of weft two-side similar pattern jacquard fabric and weft two-side independent pattern jacquard fabric, the computer-aided design of the weft two-side jacquard fabric is verified.

Research limitations/implications

Because of limited research studies, three-dimensional computer-aided design of weft-knitted two-side jacquard fabric loop structure will be studied in the further research, and the technical design speed needs to be improved to meet the needs of large patterns and positioning patterns.

Practical implications

The computer-aided design of weft-knitted two-side jacquard fabric will offer a certain reference for product development, technical principles, performance research and computer simulation for the in-depth study of the fabric.

Social implications

The computer-aided design of weft-knitted two-side jacquard fabric will simplify the fabric design process and improve the efficiency of new fabric development, and provide the industries a time-saving and cost-saving approach for new fabrics development.

Originality/value

The author analyzes the structural characteristic of the fabric by the physical fabric, summarizes design principle of the fabric through production process, uses mathematical methods to establish a three-dimensional technical model of the fabric, and proposes the CAD flow chart of weft-knitted two-side jacquard fabric, which has good theoretical significance and practice of weft-knitted two-side jacquard fabric.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 August 2017

Bahadur Goonesh Kumar, Satyadev Rosunee and Mark Bradshaw

In this research project, electrical conductive yarns were knitted together with 100 per cent cotton yarns to create knitted fabrics that would be used as electromagnetic (EM…

Abstract

Purpose

In this research project, electrical conductive yarns were knitted together with 100 per cent cotton yarns to create knitted fabrics that would be used as electromagnetic (EM) shielding materials. The paper aims to discuss these issues.

Design/methodology/approach

1×1 plain fabrics knitted on double-bed hand knitting machines of five and seven gauges. Several strands of the cotton yarns were used together in order to knit samples with good handling properties. The electrical conductive yarn has six plies and each ply has 29 filaments with Naño-coating of silver and having an electrical resistance of 4 Ohms per 100 mm and a count of 96 Tex. The knitted fabrics have similar texture but vary in term of specific weight, fabric density, loop length, Tex, tightness factor, thickness and electrical conductivity. These variations affected the properties of the fabrics, determining factors of a good shielding or not. A special designed Faraday cage was built to measure the EMSE of each knitted fabrics. The EM waves were sent through the signal generator at different frequencies as from 400 to 1,100 MHz and with three different power inputs of 10, 20 and 30 dBm. EMSE measurements were also carried out after the knitted samples were rotated clockwise.

Findings

Good EMSE shielding results were achieved with the knitted samples, however in this study it was found that different knitted fabrics shielded better at specific frequencies and power inputs.

Practical implications

Knitted fabrics can be used to develop comfortable garments that can be used to shield EM waves and protect the wearer.

Originality/value

The choice of using the conductive yarns is exclusive. In addition the EMSE were measured with fabrics knitted in the same structure but on different knitting machine gauge. Three different power inputs were considered and EMSE measurements were taken using frequencies as from 400 to 1,100 MHz. A new method for measuring the electrical resistance on the knitted fabrics and the method used for measuring the EMSE for each knitted fabric were considered.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2016

Selin Hanife Eryuruk and Fatma Kalaoglu

Knitted fabrics containing elastane provide high level of comfort and ease of usage because of the elastic and drape properties over the body. Knitted fabrics respond to every…

814

Abstract

Purpose

Knitted fabrics containing elastane provide high level of comfort and ease of usage because of the elastic and drape properties over the body. Knitted fabrics respond to every movement of the body and return back to its original shape easily so they are used widely for apparel production. The most important properties required from the elastic knitted garments are wear comfort, fit, breathability and durability. The purpose of this paper is to analyse the effect of elastane yarn count and ground yarn count on the performance properties of 12 single jersey knitted fabrics were analysed after dying.

Design/methodology/approach

The research design for this study consists an experimental study. In all, 12 fabrics containing half plating and full plating elastane were produced using 30/1-40/1 Ne yarn counts. Bursting strength, stretch recovery, residual extension, air permeability, spirality and drape properties of fabrics were evaluated.

Findings

As a result of study it was found a certain effect as the elastane amount and count changed. For all types of knitted fabrics, bursting strength values increased and fabric spirality values decreased as the elastane amount and elastane yarn count increased. Also it was found a significant relationship between elastane amount and count with air permeability, spirality, bursting strength and drape.

Originality/value

As a result of the literature review, it was seen that the effects of elastane amount, elastane yarn count and fabric yarn count on the performance properties of knitted fabrics has not been studied broadly.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 March 2021

Ryan Rudy and Wiah Wardiningsih

This study aimed to determine the peak impact force and force attenuation capacity of weft-knitted spacer fabrics intended for padding that can be used for human body protection…

Abstract

Purpose

This study aimed to determine the peak impact force and force attenuation capacity of weft-knitted spacer fabrics intended for padding that can be used for human body protection against impact.

Design/methodology/approach

A total of five weft-knitted spacer fabrics were fabricated with four different diameters of nylon monofilament yarns and one doubled monofilament yarns, respectively. The impact performances of the weft-knitted spacer fabrics were tested using a drop test method with a customized test rig to simulate falling. Impact tests were conducted on single- and multilayered experimental spacer fabrics to investigate the peak impact force and force attenuation capacity.

Findings

It was found that weft-knitted spacer fabric with a coarser or larger diameter of monofilament spacer yarn generated lower impact force and higher force attenuation capacity, thus resulting in better impact performance. Greater force attenuation can be achieved by utilizing a higher number of spacer fabric layers. However, the increase in thickness must be considered with the spacer fabric end use.

Originality/value

This study employed relatively coarse nylon monofilament yarn as spacer yarns to gain knowledge on the impact performance of weft-knitted spacer fabrics compared to warp-knitted spacer fabrics which are more common. The results showed that the diameter of spacer yarn significantly influenced the impact performance of the experimental weft-knitted spacer fabrics. These results could be useful for designing and engineering textile-based impact protectors.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 March 2023

Elvira Sarybayeva, Meruert Kuramysova, Mirabzal Mukimov, Mukhamejan Shardarbek, Zhansaule Rakhmanova, Kamshat Makhanbetaliyeva, Farkhad Tashmukhamedov, Indira Jurinskaya and Marzhan Kalmakhanova

This study aims to investigate the effects of the number of miss stitches and tuck stitches in the knit structure on the technological parameters and physical and mechanical…

Abstract

Purpose

This study aims to investigate the effects of the number of miss stitches and tuck stitches in the knit structure on the technological parameters and physical and mechanical properties of knitted fabrics.

Design/methodology/approach

The number of miss stitches and tuck stitches was increased from 3.6% to 8.3%, and the influence of this increase on knitwear properties was analyzed.

Findings

It was found that an increase from 3.6% to 8.3% leads to a decrease in the stretchability of knitwear in width from 330% to 290% and in length from 112% to 95%. With an increase from 5% to 6.3%, the surface density of knitwear decreases by 11.6 g. And with an increase from 6.3% to 8.3%, the surface density of knitwear decreases by 11.8 g. It was also found that the presence of miss stitches and tuck stitches in the knit structure reduces the material consumption, and the presence of miss stitches increases the shape stability of the knitted fabric.

Originality/value

It was concluded that the number of miss stitches and tuck stitches has the strongest influence on surface density, followed by volume density.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of over 1000