Search results

1 – 10 of 34
Article
Publication date: 1 April 2007

J. Aghazadeh Mohandesi and A. Nazari

The kinetics of nitriding in titanium bearing austenitic stainless steels in cylindrical coordination has been investigated. Nitriding at nitrogen partial pressure of 0.5 atm and…

Abstract

The kinetics of nitriding in titanium bearing austenitic stainless steels in cylindrical coordination has been investigated. Nitriding at nitrogen partial pressure of 0.5 atm and temperature from 980°C up to 1160oC resulted in the formation of titanium and chromium nitride and above the Cr2N solvus temperature (1100°C), no chromium nitride was formed. The nitrided case may consist of up to three zones: nitrogen in solid solution, precipitation of TiN and finally mixed TiN+Cr2N precipitation. These are in consistent with the affinity of titanium and chromium towards nitrogen which has been thermodynamically justified. To assess the kinetics of nitriding, a mathematical model for nitrogen diffusion in cylindrical system has been developed via solving Fick’s equation for cylindrical coordinate by numerical method. For this purpose the use has been made of the austenite stabilizing effect of nitrogen to correlate the movement of the boundary of the nitrogen stabilized austenite and plastic deformation induced martensite. Since the crystal structure of the material used in this study is of fcc type and it is nitrided in a fully annealed and unstrained state, therefore the effect of excess nitrogen on the kinetics of nitride fronts growth has been assumed as negligible. The results are in good agreement with the previous investigations. Unlike previous works, the present model takes into account the change of nitrogen diffusion coefficient due to nitrogen concentration profile and

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 May 2011

Reza Shoja Razavi, Gholam Reza Gordani and H.C. Man

The purpose of this paper is to consider the corrosion properties of laser nitrided Ti‐6Al‐4V alloys that have been reported previously by several researchers.

1105

Abstract

Purpose

The purpose of this paper is to consider the corrosion properties of laser nitrided Ti‐6Al‐4V alloys that have been reported previously by several researchers.

Design/methodology/approach

Different kinds of surface nitriding methods of titanium alloys, such as plasma nitriding, ion nitriding, gas and laser nitriding, are introduced. Microstructure changes, such as phase formation and the influence of laser processing parameters in laser nitriding layers of Ti‐6Al‐4V alloys, were investigated using scanning electron microscope, transmission electron microscope, X‐ray photo‐electron spectroscopy, and X‐ray diffraction. Based on investigations presented in the literature, the effect of laser nitriding on the corrosion behavior of Ti‐6Al‐4V alloy was reviewed.

Findings

By regulating the laser processing parameter, the microstructure of the nitrided layer can be controlled to optimize corrosion properties. This layer improves corrosion behavior in most environments, due to the formation of a continuous TiNxOy passive film, which can retard the ingress of corrosive ions into the substrate and can maintain a constant value of a current density. Therefore, the laser gas nitrided specimens have a relatively noble corrosion potential and a very small corrosion current, as compared to untreated specimens.

Originality/value

This paper comprises a critical review, and its collection of references is useful. It summarizes current knowledge in laser surface treatment research.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 November 2012

N. Lecis, M. Vedani and S. Farè

This paper aims to investigate the structure and scratch resistance properties of gas nitrided pure iron samples.

Abstract

Purpose

This paper aims to investigate the structure and scratch resistance properties of gas nitrided pure iron samples.

Design/methodology/approach

The effects of material strain hardening and amount of grain boundaries exposed on nitriding surface were evaluated by cold rolling the starting samples to different reduction levels before gas nitriding.

Findings

The study finds that nitriding without any prior cold rolling produced a comparatively wide compound layer with a large fraction of porous zone featuring low scratch hardness values but no evidence of damage. On the contrary, cold rolling before nitriding led to a more irregular and thinner compound layer with reduced amount of porous zone and much finer nitrides in the diffusion zone. Scratch hardness was increased but failure mechanism changed by generation of conformal cracks within the track groove and the appearance of discontinuous spallation at high loads.

Originality/value

One of the issues of great industrial importance concerning nitriding of steels is the need to predict the extent of the nitrided layer in products showing small variations in microstructure or in extent of cold working due to complex manufacturing cycles. Despite the practical importance, relatively little information is available in literature about these issues. The present paper is therefore aimed at investigating the structure and mechanical properties of pure iron samples, gas nitrided with different amounts of cold working and microstructural conditions.

Details

International Journal of Structural Integrity, vol. 3 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 November 2013

Jeremy Cockrem, Tomasz Pawel Dudziak, Nigel Simms, Mikolaj Lukaszewicz and John Oakey

It is well known that alloys, based on iron, were exposed to steam oxidation environment producing thick and non-protective oxide scale. More expensive stainless steels contain…

Abstract

Purpose

It is well known that alloys, based on iron, were exposed to steam oxidation environment producing thick and non-protective oxide scale. More expensive stainless steels contain more Cr and are able to form more protective scales. The purpose of this research was to show ability to employ nitride coating on different alloys (T23, T91, E1250, 347HFG and HR3C) in order to enhance steam oxidation resistance.

Design/methodology/approach

The alloys were exposed to steam oxidation rig. Before the test, furnace was purged by nitrogen in order to remove moisture and oxygen. Di-ionised water was pumped from the reservoir using a peristaltic pump into the furnace. System was kept in the closed circle. To reduce solubility of oxygen, di-ionised water was constantly purged by nitrogen. The total exposure time was 2,000 h at 650°C under 1 bar pressure.

Findings

Due to the research, it was found that plasma nitriding process is detrimental for the protection of high-temperature structured materials; the high concentration and high activity of Cr produced a CrN phase. This phase is not stable in steam environment and underwent oxidation to Cr2O3 and further into volatile phase (CrO2(OH)2). Therefore, austenitic steels (E1250, 347HFG and HR3C) coated with nitride coating deposited by plasma nitriding process suffered similar degradation as the uncoated low Cr ferritic steel.

Research limitations/implications

The main limitation of the research conducted in this study was corrosion resistance of the exposed materials.

Originality/value

To the best of the authors' knowledge, this report is the first of its kind to present nitrided alloys (ferritic and austenitic) exposed in steam oxidation.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 2013

Hakan Aydin, Ali Bayram and Şükrü Topçu

The purpose of this paper is to present the results of a study on friction characteristics of plasma, salt‐bath and gas nitrided layers produced in AISI 304 type austenitic and…

Abstract

Purpose

The purpose of this paper is to present the results of a study on friction characteristics of plasma, salt‐bath and gas nitrided layers produced in AISI 304 type austenitic and AISI 420 type martensitic stainless steels.

Design/methodology/approach

Plasma nitriding processes were carried out with DC‐pulsed plasma in 80% N2+20% H2 atmosphere at 450°C and 520°C for 8 h at a pressure of 2 mbar. Salt‐bath nitriding was performed in a cyanide‐cyanate salt‐bath at 570°C for 1.5 h. Gas nitriding was also conducted in NH3 and CO2 atmosphere at 570°C for 13 h. Characterization of all nitrided samples has been carried out by means of microstructure, microhardness, surface roughness measurement and friction coefficient. The morphologies of the worn surfaces of the nitrided samples were also observed using a scanning electron microscope. Friction characteristics of the nitrided samples have been investigated using a ball‐on‐disc friction and wear tester with a WC‐Co ball as the counterface under dry sliding conditions.

Findings

The plasma nitrided and salt‐bath nitrided layers on the 420 steel surfaces were much thicker than on the 304 steel surfaces. However, there was no obvious and homogeneous nitrided layer on the gas nitrided samples' surface. The plasma and salt‐bath nitriding techniques significantly increased the surface hardness of the 304 and 420 samples. The highest surface hardness of the 304 nitrided samples was obtained by the plasma nitrided technique at 520°C. On the other hand, the highest surface hardness of the 420 nitrided layers was observed in the 450°C plasma nitrided layer. Experimental friction test results showed that the salt‐bath and 450°C plasma nitrided layers were more effective in reducing the friction coefficient of the 304 and 420 stainless steels, respectively.

Originality/value

The relatively poor hardness and hence wear resistance of austenitic and martensitic stainless steels needs to be improved. Friction characteristic is a key property of performance for various applications of austenitic and martensitic stainless steels. This work has reported a comparison of friction characteristics of austenitic 304 and martensitic 420 stainless steels, modified using plasma, salt‐bath and gas nitriding processes. The paper is of significances for improving friction characteristics, indirectly wear performances, of austenitic and martensitic stainless steels.

Article
Publication date: 2 August 2021

Modupeola Dada, Patricia Popoola and Ntombi Mathe

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential…

1472

Abstract

Purpose

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential alternatives to nickel superalloys for gas turbine applications. Understandings of the laser surface modification techniques of the HEA are discussed whilst future recommendations and remedies to manufacturing challenges via laser are outlined.

Design/methodology/approach

Materials used for high-pressure gas turbine engine applications must be able to withstand severe environmentally induced degradation, mechanical, thermal loads and general extreme conditions caused by hot corrosive gases, high-temperature oxidation and stress. Over the years, Nickel-based superalloys with elevated temperature rupture and creep resistance, excellent lifetime expectancy and solution strengthening L12 and γ´ precipitate used for turbine engine applications. However, the superalloy’s density, low creep strength, poor thermal conductivity, difficulty in machining and low fatigue resistance demands the innovation of new advanced materials.

Findings

HEAs is one of the most frequently investigated advanced materials, attributed to their configurational complexity and properties reported to exceed conventional materials. Thus, owing to their characteristic feature of the high entropy effect, several other materials have emerged to become potential solutions for several functional and structural applications in the aerospace industry. In a previous study, research contributions show that defects are associated with conventional manufacturing processes of HEAs; therefore, this study investigates new advances in the laser-based manufacturing and surface modification techniques of HEA.

Research limitations/implications

The AlxCoCrCuFeNi HEA system, particularly the Al0.5CoCrCuFeNi HEA has been extensively studied, attributed to its mechanical and physical properties exceeding that of pure metals for aerospace turbine engine applications and the advances in the fabrication and surface modification processes of the alloy was outlined to show the latest developments focusing only on laser-based manufacturing processing due to its many advantages.

Originality/value

It is evident that high entropy materials are a potential innovative alternative to conventional superalloys for turbine engine applications via laser additive manufacturing.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 March 2015

Mumin Sahin, Cenk Misirli and Dervis Özkan

– The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail.

Abstract

Purpose

The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail.

Design/methodology/approach

In this study, HSS steel parts have been processed through machining and have been coated with AlTiN and TiN on physical vapour deposition workbench at approximately 6,500°C for 4 hours. Tensile strength, fatigue strength, hardness tests for AlTiN- and TiN-coated HSS samples have been performed; moreover, energy dispersive X-ray spectroscopy and X-ray diffraction analysis and microstructure analysis have been made by scanning electron microscopy. The obtained results have been compared with uncoated HSS components.

Findings

It was found that tensile strength of TiAlN- and TiN-coated HSS parts is higher than that of uncoated HSS parts. Highest tensile strength has been obtained from TiN-coated HSS parts. Number of cycles for failure of TiAlN- and TiN-coated HSS parts is higher than that for HSS parts. Particularly TiN-coated HSS parts have the most valuable fatigue results. However, surface roughness of fatigue samples may cause notch effect. For this reason, surface roughness of coated HSS parts is compared with that of uncoated ones. While the average surface roughness (Ra) of the uncoated samples was in the range of 0.40 μm, that of the AlTiN- and TiN-coated samples was in the range of 0.60 and 0.80 μm, respectively.

Research limitations/implications

It would be interesting to search different coatings for cutting tools. It could be the good idea for future work to concentrate on wear properties of tool materials.

Practical implications

The detailed mechanical and metallurgical results can be used to assess the AlTiN and TiN coating applications in HSS materials.

Originality/value

This paper provides information on mechanical and metallurgical behaviour of AlTiN- and TiN-coated HSS materials and offers practical help for researchers and scientists working in the coating area.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 1996

Bill Wilson

Reports in improvements in the gear industry since 1993, and provides details of six projects carried out by the British Gear Association and the Gear Research Foundation. Briefly…

2242

Abstract

Reports in improvements in the gear industry since 1993, and provides details of six projects carried out by the British Gear Association and the Gear Research Foundation. Briefly discusses the Navy and Vickers Gear Research Association research and the work of the Technical Committee. Finally discusses marketing strategy for Germany and Italy.

Details

Industrial Lubrication and Tribology, vol. 48 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 December 2019

Bassam Abdallah, M. Kakhia and W. Alsadat

TiN and TiAlVN films have been prepared by DC magnetron sputtering technique at room temperature. TiN target has been used to deposit TiN thin film under pure argon (100 percent…

Abstract

Purpose

TiN and TiAlVN films have been prepared by DC magnetron sputtering technique at room temperature. TiN target has been used to deposit TiN thin film under pure argon (100 percent Ar) gas. Additionally, Ti6Al4V alloy target has been used to deposit TiAlVN under nitrogen and argon gas (50 percent Ar and 50 percent N2). In this paper, two substrate types have been used: stainless steel 304 and Si(100). This analysis has confirmed that the nitride films, (TiN/Si) and TiAlVN in both cases, have been produced. Energy Depressive X-ray Spectroscopy (EDX) measurement confirmed that the TiN/Si was stoichiometry, where the N/Ti ratio was about 1 with low oxygen contamination. The results obtained have indicated that the TiAlVN has more resistance to corrosion than TiN film in 3.5 percent NaCl at 25°C (seawater). Both films, TiAlVN/SS304 and TiN/SS304, have shown improved corrosion resistance compared with virgin 304 substrate. Microhardness was carried out using Vickers method; the microhardness values for TiN/SS304 and TiAlVN/SS304 were approximately 7.5 GPa and 25.3 GPa, respectively. The paper aims to discuss these issues.

Design/methodology/approach

The films were prepared by a DC magnetron sputtering system starting from high pure (99.99 percent) Ti6Al4V target (Al 6wt%, V 4wt% and balance Ti) in plasma discharge argon/nitrogen (50 percent Ar and 50 percent N2) for deposition of TiAlVN film. Pure TiN target (99.99 percent) was used for preparation of TiN film in pure argon plasma. The diameter of target was 50 mm and the power applied for preparation of the two films was 100 W. A cylindrical high-vacuum chamber (Figure 2) made of stainless steel 316, with height 363 mm diameter, was fabricated locally. Scanning electron microscope images have been used to discover the films morphology. The composition of the films has been determined by EDX technique for films deposited on Si substrate. The electrochemical corrosion test was carried out using conventional three-electrode cell of 300 ml capacity by using Voltalab PGZ 301 system (France) using Tafel extrapolation method and electrochemical impedance spectroscopy techniques.

Findings

TiN and TiAlVN films have been prepared by DC magnetron sputtering technique without heating of the substrates holder. The effects of the composition of nitride films on mechanical and corrosion properties were investigated. The composition of the films has been determined by EDX technique. The effect of using titanium alloy (Ti with Al and V) on the composition and crystalline quality has been investigated. The microhardness is strongly dependent on the addition of the Al and V elements, and it consequently improves mechanical proprieties. The microhardness values for TiN/SS304 were approximately 7.5 GPa and 25.3 GPa for TiAlVN/SS304. They indicate that prepared films prevent the aggressive action of corrosion media.

Originality/value

TiN and TiAlVN films have been prepared by DC magnetron sputtering method at room temperature. Titanium nitride film, especially TiAlVN, is an effective method to improve the corrosion resistance of SS304. TiAlVN film has exhibited enhanced corrosion resistance and higher microhardness. Independent time-of-flight elastic recoil detection analysis has been used to determine the composition of the film.

Details

International Journal of Structural Integrity, vol. 11 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 October 2018

Sarbjeet Kaushal and Satnam Singh

The purpose of this paper is to study the effect of slurry erosion at different parameters on plasma sprayed Cr3C2 coated 13Cr4Ni turbine steel and compare the results of coated…

Abstract

Purpose

The purpose of this paper is to study the effect of slurry erosion at different parameters on plasma sprayed Cr3C2 coated 13Cr4Ni turbine steel and compare the results of coated steel with bare steel.

Design/methodology/approach

Cr3C2 + 25NiCr coating was successfully developed on 13Cr4Ni turbine steel using plasma spraying method. The slurry erosion test was performed using a simulated erosion testing rig. The commercially available silica sand was used as abrasive media and the effect of concentration (ppm), average particle sizes and rotational speed on the slurry erosion behavior were studied at 300 and 900 impact angles. Developed coatings were characterized by scanning electron microscope, XRD, EDS and micro hardness tests and study of erosion wear.

Findings

Results revealed that three times higher hardness of coatings was obtained because of the hard phases of chromium carbide and nickel carbide, which restricted the abrasive wear in comparison to uncoated steel. Lower abrasive wear was observed at 900 impact angle coupled with lower levels of slurry concentration and rotational speed. Further, it was observed that initially cumulative mass loss rate was high which gets stabilized after the surface become smooth and on exposing for higher periods. Overall results indicated that erosive wear was reduced significantly by the application of developed coating.

Originality/value

The developed plasma sprayed coating is very useful to enhance the service life of turbine steel by lowering the effect of slurry erosion.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 34