Search results

1 – 10 of over 3000
Article
Publication date: 5 February 2018

Nathan Grange, Pietro Tadini, Khaled Chetehouna, Nicolas Gascoin, Guillaume Bouchez, Samuel Senave and Isabelle Reynaud

The purpose of this paper is to evaluate the fire resistance of an innovative carbon-reinforced PEKK composite for aeronautical applications. To this end, thermal degradation…

Abstract

Purpose

The purpose of this paper is to evaluate the fire resistance of an innovative carbon-reinforced PEKK composite for aeronautical applications. To this end, thermal degradation analysis under inert and oxidative atmosphere is carried out. Moreover, a linear model fitting approach is compared to a generally used isoconversional method to validate its reliability for kinetic triplet estimation.

Design/methodology/approach

Thermogravimetric analysis carried out under inert and oxidative atmospheres, between 25 and 1000°C for three different heating rates (5, 15, 25°C/min), followed by a qualitative SEM observation of the samples before and after thermal treatment. After the reaction identification by TG/DTG curves, an isoconversional analysis is carried out to estimate the activation energy as a function of the reaction conversion rate. For the identified reactions, the kinetic triplet is estimated by different methods and the results are compared to evaluate their reliability.

Findings

In inert case, one global reaction, observed between 500-700°C, seems able to describe the degradation of carbon-PEKK resin. Under oxidative atmosphere, three main reactions are identified, besides the resin degradation, the other two are attributed to char and fiber oxidation. Good agreement achieved between isoconversional and linear model fitting methods in activation energy calculation. The achieved results demonstrate the high thermal resistance of PEKK associated with the ether and ketone bonds between the three aromatic groups of its monomer.

Originality/value

This paper provides a possible degradation model useful for numerical implementation in CFD calculations for aircraft components design, when exposed to high temperatures and fire conditions.

Details

International Journal of Structural Integrity, vol. 9 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 November 2012

Jing Lin, Wei Wang, Xiufang Wen, Zhi‐Qi Cai, Pihui Pi, Da‐feng Zheng, Jiang Cheng and Zhuoru Yang

The purpose of this paper is to study thermal stability, curing kinetics and physico‐chemical properties of polyurethanes systems for application in in‐mould decoration (IMD) ink.

Abstract

Purpose

The purpose of this paper is to study thermal stability, curing kinetics and physico‐chemical properties of polyurethanes systems for application in in‐mould decoration (IMD) ink.

Design/methodology/approach

The thermal stability of three Polyurethane (Pu) systems A, B, C were evaluated by thermogravimetric analysis (TGA). The kinetic parameters of the curing reaction of Pu system C were calculated using non‐isothermal curing kinetics analysis, including the activation energy Ea, the reaction rate constant K(T), the reaction order n, the initial curing temperature (Ti), the peak temperature (Tp), and the finishing temperature (Tf). Additionally, physico‐chemical properties were also evaluated such as flexibility, impact resistance, pencil hardness, adhesive attraction and solvent resistance.

Findings

TGA showed that thermal decomposition temperature T5 (5 wt.% weight loss), T10 (10 wt.% weight loss) and Tend (decomposition termination temperature) of Pu system C was 344°C, 363°C, and 489°C, respectively. T5, T10, Tend increased by 77°C, 61°C, 4°C, respectively, and the char yield at 600°C increased by 25.1 wt.% comparing with Pu system B. Curing kinetics analysis showed that Ea of Pu system C was 62.29 KJ/mol, 65.98 KJ/mol and 65.95 KJ/mol by Kissinger, Flynn‐Wall‐Ozawa and Ozawa method, respectively. The order of the curing reaction (n=0.90) demonstrated that it was a complex reaction. Moreover, Pu system C exhibited good physico‐chemical properties. The results showed that Pu system C was suitable to apply into IMD ink.

Research limitations/implications

The TGA analysis, curing kinetics analysis and evaluation of physico‐chemical properties provided a simple and practical solution to study suitable resins for IMD ink application.

Practical implications

IMD ink for heat transfer printing technology is highly efficient, relatively low cost, clean and environmentally safe. It has been widely applied into medical and pharmaceutical products, electronic devices, telecommunication equipment, computer parts, appliance panels, automotive parts, etc.

Originality/value

In this paper, the thermal stability and curing kinetics of Pu for IMD ink are reported for the first time. The paper gives very interesting and important information about thermal stability, curing kinetics and properties of Pu coating system for IMD ink application.

Details

Pigment & Resin Technology, vol. 41 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 September 2011

Tithi Maity, Bidhan Samanta, Ajit Banthia and Sudipta Dalai

The purpose of this paper is to find a new curing agent for diglycidyl ether of bisphenol A (DGEBA) resin and to check effectiveness of this new curing agent to obtain toughness…

Abstract

Purpose

The purpose of this paper is to find a new curing agent for diglycidyl ether of bisphenol A (DGEBA) resin and to check effectiveness of this new curing agent to obtain toughness and chemical resistance of cured epoxy.

Design/methodology/approach

For this purpose, an investigation was carried out to synthesise, characterise and to study curing reaction of amine functional aniline acetaldehyde condensate (AFAAC) with DGEBA resin. AFAAC was first synthesised from the reaction of aniline and acetaldehyde in acid medium and characterised by FT‐IR, 1H‐NMR spectroscopic analyses, elemental analysis, concentration of primary and secondary amine analysis. Then equimolecular mixture of AFAAC and DGEBA was subjected to curing reaction and the reaction was followed by differential scanning calorimetry (DSC) analysis. The kinetic studies of this curing reaction, mechanical properties, dynamic mechanical analysis and thermogravimetric analysis (TGA) of cured epoxy were also reported.

Findings

The DSC analysis showed the complete exotherms of effective curing reaction indicating the efficiency of AFAAC as curing agent for DGEBA resin. The kinetic studies revealed that the curing reaction was first order. Mechanical properties reflect the better fracture properties of cured matrix and TGA showed that the cured matrixes were stable up to around 238°C.

Research limitations/implications

The curing agent AFAAC has been synthesised by using aniline and acetaldehyde. By changing amine and aldehyde, other curing agents could be synthesised and the curing efficiency of these for epoxy resin could also be studied.

Originality/value

The method for curing study of epoxy resin (DGEBA) is novel and relevant as the cured products have high‐performance applications in protective coatings, adhesives for most substrates.

Details

Pigment & Resin Technology, vol. 40 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 September 2009

Tithi Maity and Bidhan Samanta

The purpose of this paper is to investigate the curing efficiency of amine functional aniline furfuraldehyde condensate (AFAFFC) for diglycidyl ether of bisphenol A (DGEBA) resin…

Abstract

Purpose

The purpose of this paper is to investigate the curing efficiency of amine functional aniline furfuraldehyde condensate (AFAFFC) for diglycidyl ether of bisphenol A (DGEBA) resin to achieve toughness, chemical resistance, etc.

Design/methodology/approach

To study curing reaction, the curing agent AFAFFC is synthesised first from the reaction of aniline and furfuraldehyde in acid medium and characterised by Fourier transform infrared spectroscopic analysis, elemental analysis, concentration of primary and secondary amine analysis. Then, equimolecular mixture of AFAFFC and DGEBA is subjected to curing reaction and the reaction is followed by differential scanning calorimetry (DSC) analysis. The kinetic studies of this curing reaction, mechanical properties, dynamic mechanical analysis and thermogravimetric analysis (TGA) of cured epoxy are also reported.

Findings

The DSC analysis shows the complete exotherms of effective curing reaction indicating the efficiency of AFAFFC as curing agent for DGEBA resin. The kinetic studies reveal that the curing reaction is first order. Mechanical properties reflect the brittleness of cured matrix and TGA shows that the cured matrixes are stable up to around 240°C.

Research limitations/implications

The curing agent AFAFFC has been synthesised by using aniline and furfuraldehyde. By changing amine and aldehyde, other curing agents could be synthesised and the curing efficiency of these for epoxy resin could also be studied.

Originality/value

The method for curing study of epoxy resin (DGEBA) is novel and relevant as the cured products have high performance applications in protective coatings and adhesives for most substrates.

Details

Pigment & Resin Technology, vol. 38 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 November 2014

M. Grujicic, V. Chenna, R. Galgalikar, J.S. Snipes, S. Ramaswami and R. Yavari

A simple economic analysis has revealed that in order for wind energy to be a viable alternative, wind-turbines (convertors of wind energy into electrical energy) must be able to…

Abstract

Purpose

A simple economic analysis has revealed that in order for wind energy to be a viable alternative, wind-turbines (convertors of wind energy into electrical energy) must be able to operate for at least 20 years, with only regular maintenance. However, wind-turbines built nowadays do not generally possess this level of reliability and durability. Specifically, due to the malfunction and failure of drive-trains/gear-boxes, many wind-turbines require major repairs after only three to five years in service. The paper aims to discuss these issues.

Design/methodology/approach

The subject of the present work is the so-called white etch cracking, one of the key processes responsible for the premature failure of gear-box roller-bearings. To address this problem, a multi-physics computational methodology is developed and used to analyze the problem of wind-turbine gear-box roller-bearing premature-failure. The main components of the proposed methodology include the analyses of: first, hydrogen dissolution and the accompanying grain-boundary embrittlement phenomena; second, hydrogen diffusion from the crack-wake into the adjacent unfractured material; third, the inter-granular fracture processes; and fourth, the kinematic and structural response of the bearing under service-loading conditions.

Findings

The results obtained clearly revealed the operation of the white-etch cracking phenomenon in wind-turbine gear-box roller-bearings and its dependence on the attendant loading and environmental conditions.

Originality/value

The present work attempts to make a contribution to the resolution of an important problem related to premature-failure and inferior reliability of wind-turbine gearboxes.

Details

International Journal of Structural Integrity, vol. 5 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 December 2018

Rafal Stanik, Albert Langkamp, Michael Müller, Maik Gude and Anna Boczkowska

Novel snap-cure polymers (SCPs), as matrix systems for high-performance fibre composite materials, provide high potential for manufacturing of component families with small batch…

Abstract

Purpose

Novel snap-cure polymers (SCPs), as matrix systems for high-performance fibre composite materials, provide high potential for manufacturing of component families with small batch sizes and high variability. Especially, the processing of powdered SCP is associated with relatively simple and inexpensive tools. In addition, because of their curing behaviour, they allow short tooling times so that the production of small batch size components is possible in relatively short cycle times. To enable an efficient manufacturing process, an understanding of the curing process is necessary. An adjustment of the process parameters for a uniform design of the temperature field in the material during the manufacturing process is essential. The paper aims to discuss this issue.

Design/methodology/approach

For this, a powder SCP resin system was investigated under process-specific conditions. An experimental test approach for determination of various thermal and kinetic material properties was developed. For the adjustment of the process parameters and monitoring of the curing state during the manufacturing process, a kinetic material model was determined. In the end, the validation of the determined model was performed. For this, the temperature distribution under process- specific conditions was measured in order to monitor the curing state of the material.

Findings

The experimental investigation showed an uneven temperature field in the material, which leads to an inhomogeneous curing process. This can lead to residual stresses in the structure, which have a critical impact on the material properties.

Originality/value

The determined kinetic model allows a prediction of the curing reaction and adjustment of the process parameters which is essential, especially for thick-walled components with SCPs.

Details

International Journal of Structural Integrity, vol. 9 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 February 2015

M. Grujicic, V. Chenna, R. Yavari, R. Galgalikar, J.S. Snipes and S. Ramaswami

To make wind energy (one of the alternative-energy production technologies) economical, wind-turbines (convertors of wind energy into electrical energy) are required to operate…

Abstract

Purpose

To make wind energy (one of the alternative-energy production technologies) economical, wind-turbines (convertors of wind energy into electrical energy) are required to operate, with only regular maintenance, for at least 20 years. However, some key wind-turbine components (especially the gear-box) often require significant repair or replacement after only three to five years in service. This causes an increase in both the wind-energy cost and the cost of ownership of the wind turbine. The paper aims to discuss these issues.

Design/methodology/approach

To overcome this problem, root causes of the gear-box premature failure are currently being investigated using mainly laboratory and field-test experimental approaches. As demonstrated in many industrial sectors (e.g. automotive, aerospace, etc.) advanced computational engineering methods and tools cannot only complement these experimental approaches but also provide additional insight into the problem at hand (and do so with a substantially shorter turn-around time). The present work demonstrates the use of a multi-length-scale computational approach which couples large-scale wind/rotor interactions with a gear-box dynamic response, enabling accurate determination of kinematics and kinetics within the gear-box bearings (the components most often responsible for the gear-box premature failure) and ultimately the structural response (including damage and failure) of the roller-bearing components (e.g. inner raceways).

Findings

It has been demonstrated that through the application of this approach, one can predict the expected life of the most failure-prone horizontal axis wind turbine gear-box bearing elements.

Originality/value

To the authors’ knowledge, the present work is the first multi-length-scale study of bearing failure in wind-turbines.

Details

International Journal of Structural Integrity, vol. 6 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 January 2015

T. Maity and B.C. Samanta

The purpose of this paper was to check effectiveness of amine functional chloroaniline acetaldehyde condensate (AFCAC) as a new curing agent for diglycidyl ether of bisphenol A…

Abstract

Purpose

The purpose of this paper was to check effectiveness of amine functional chloroaniline acetaldehyde condensate (AFCAC) as a new curing agent for diglycidyl ether of bisphenol A (DGEBA) resin. For this purpose, first AFCAC was synthesised, characterised and then curing reaction was carried out.

Design/methodology/approach

Equimolecular mixture of AFCAC and DGEBA was subjected to curing reaction, and the reaction was followed by differential scanning calorimetry (DSC) analysis. The kinetic studies of this curing reaction were also carried out from those DSC exotherms. The mechanical properties, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) of cured epoxy were also reported.

Findings

DSC results reflected the effective first order curing reaction of AFCAC with epoxy resin. Mechanical properties reflected appreciable rigidity of AFCAC cured epoxy matrix and TGA showed that the cured epoxy networks were thermally stable up to around 297°C.

Research limitations/implications

The curing agent AFCAC was synthesised by using chloroaniline and acetaldehyde in acid medium. There are some limitations for this procedure. The synthetic procedure is pH dependent. So reaction cannot be done at any pH value. The reaction must also be carried out at room temperature without any heating. To obtain low molecular weight curing agent, chloroaniline and acetaldehyde cannot be taken in equimolecular ratio because the equimolecular mixture of them produces high molecular weight condensate. This was shown in our previous publication. Some implications are also there. By changing amine and aldehyde other curing agents could be synthesised and the curing efficiency of those for epoxy resin could also be studied.

Originality/value

Experimental results revealed the greater suitability of AFCAC as curing agent for DGEBA resin and novelty of AFCAC cured matrix in the field of protective coating, casting, adhesives, etc.

Details

Pigment & Resin Technology, vol. 44 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 April 1995

J.H. Choi

Photoresist imaging traditionally uses silver halide or diazo based phototools for contact exposure to an actinic UV light source. By contrast, laser direct imaging uses digital…

Abstract

Photoresist imaging traditionally uses silver halide or diazo based phototools for contact exposure to an actinic UV light source. By contrast, laser direct imaging uses digital imaging data to control a laser beam scanner to write directly on to the photoresist, therefore eliminating the need for phototools. In the past, even though the benefit of a UV system was recognised, laser direct imaging was mainly limited to the use of a visible laser as early UV lasers were low in power, unreliable and expensive. So far, no visible systems have gained commercial recognition because of the inherent deficiencies of the visible system. Recent advantages in UV laser equipment and UV sensitive photoresist have now made UV laser direct imaging a viable alternative to traditional contact imaging. As new UV laser imaging systems start to emerge, interest and attention are also growing among printed circuit board manufacturers. This paper discusses various attributes of a UV laser direct imaging system and fundamental differences in photophysics between laser direct imaging and conventional UV imaging.

Details

Circuit World, vol. 21 no. 4
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 June 1994

B. H. V. Topping and A. I. Khan

This paper describes a parallel algorithm for the dynamic relaxation(DR) method. The basic theory of the dynamic relaxation is brieflyreviewed to prepare the reader for the…

Abstract

This paper describes a parallel algorithm for the dynamic relaxation (DR) method. The basic theory of the dynamic relaxation is briefly reviewed to prepare the reader for the parallel implementation of the algorithm. Some fundamental parallel processing schemes have been explored for the implementation of the algorithm. Geometric Parallelism was found suitable for the DR method when using transputer‐based systems. The evolution of the parallel algorithm is given by identifying the steps which may be executed in parallel. The structure of the parallel code is discussed and then described algorithmically. Two geometrically non‐linear parallel finite element analyses have been performed using different mesh densities. The number of processors was varied to investigate algorithm efficiency and speed ups. Using the results obtained it is shown that the computational efficiency increases when the computational load per processor is increased.

Details

Engineering Computations, vol. 11 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000