Search results

1 – 10 of over 3000
Article
Publication date: 10 February 2020

Dongping Zhao, Gangfeng Wang, Jizhuang Hui, Wei Hou and Richard David Evans

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and…

Abstract

Purpose

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and quality of assembly. However, there is still a need for a systematic approach to be developed for APA of kinematic mechanisms. To achieve more accurate analysis of kinematic assembly, this paper aims to propose a precision analysis method based on equivalence of the deviation source.

Design/methodology/approach

A unified deviation vector representation model is adopted by considering dimension deviation, geometric deviation, joint clearance and assembly deformation. Then, vector loops and vector equations are constructed, according to joint type and deviation propagation path. A combined method, using deviation accumulation and sensitivity modeling, is applied to solve the kinematic APA of complex products.

Findings

When using the presented method, geometric form deviation, joint clearance and assembly deformation are considered selectively during tolerance modeling. In particular, the proposed virtual link model and its orientation angle are developed to determine joint deviation. Finally, vector loops and vector equations are modeled to express deviation accumulation.

Originality/value

The proposed method provides a new means for the APA of complex products, considering joint clearance and assembly deformation while improving the accuracy of APA, as much as possible.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 20 December 2017

Dan Zhao, Yunbo Bi and Yinglin Ke

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose…

Abstract

Purpose

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose accuracy into account, which will largely influence the machining accuracy of the dual-machine system and assembly quality.

Design/methodology/approach

A comprehensive kinematic model of the dual-machine system is established by the superposition of sub-models with pose constraints, which involves base frame parameters, kinematic parameters and tool frame parameters. Based on the kinematic model and the actual pose error data measured by a laser tracker, the parameters of coordinated machines are identified by the Levenberg–Marquardt method as a multi-objective nonlinear optimization problem. The identified parameters of the coordinated machines will be used in the control system.

Findings

A new calibration method for the dual-machine system is developed, including a comprehensive kinematic model and an efficient parameter identification method. The experiment results show that with the proposed method, the pose accuracy of the dual-machine system was remarkably improved, especially the relative position and orientation errors.

Practical implications

This method has been used in an aircraft assembly project. The calibrated dual-machine system shows a good performance on system coordination and machining accuracy.

Originality/value

This paper proposes a new method with high accuracy and efficiency for the dual-machine system calibration. The research can be extended to multi-machine and multi-robot fields to improve the system precision.

Article
Publication date: 8 April 2021

Wenmin Chu, Xiang Huang and Shuanggao Li

With the improvement of modern aircraft requirements for safety, long life and economy, higher quality aircraft assembly is needed. However, due to the manufacturing and assembly…

Abstract

Purpose

With the improvement of modern aircraft requirements for safety, long life and economy, higher quality aircraft assembly is needed. However, due to the manufacturing and assembly errors of the posture adjustment mechanism (PAM) used in the digital assembly of aircraft large component (ALC), the posture alignment accuracy of ALC is difficult to be guaranteed, and the posture adjustment stress is easy to be generated. Aiming at these problems, this paper aims to propose a calibration method of redundant actuated parallel mechanism (RAPM) for posture adjustment.

Design/methodology/approach

First, the kinematics model of the PAM is established, and the influence of the coupling relationship between the axes of the numerical control locators (NCL) is analyzed. Second, the calibration method based on force closed-loop feedback is used to calibrate each branch chain (BC) of the PAM, and the solution of kinematic parameters is optimized by Random Sample Consensus (RANSAC). Third, the uncertainty of kinematic calibration is analyzed by Monte Carlo method. Finally, a simulated posture adjustment system was built to calibrate the kinematics parameters of PAM, and the posture adjustment experiment was carried out according to the calibration results.

Findings

The experiment results show that the proposed calibration method can significantly improve the posture adjustment accuracy and greatly reduce the posture adjustment stress.

Originality/value

In this paper, a calibration method based on force feedback is proposed to avoid the deformation of NCL and bracket caused by redundant driving during the calibration process, and RANSAC method is used to reduce the influence of large random error on the calibration accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 April 2021

Jinlei Zhuang, Ruifeng Li, Chuqing Cao, Yunfeng Gao, Ke Wang and Feiyang Wang

This paper aims to propose a measurement principle and a calibration method of measurement system integrated with serial robot and 3D camera to identify its parameters…

Abstract

Purpose

This paper aims to propose a measurement principle and a calibration method of measurement system integrated with serial robot and 3D camera to identify its parameters conveniently and achieve high measurement accuracy.

Design/methodology/approach

A stiffness and kinematic measurement principle of the integrated system is proposed, which considers the influence of robot weight and load weight on measurement accuracy. Then an error model is derived based on the principle that the coordinate of sphere center is invariant, which can simultaneously identify the parameters of joint stiffness, kinematic and hand-eye relationship. Further, considering the errors of the parameters to be calibrated and the measurement error of 3D camera, a method to generate calibration observation data is proposed to validate both calibration accuracy and parameter identification accuracy of calibration method.

Findings

Comparative simulations and experiments of conventional kinematic calibration method and the stiffness and kinematic calibration method proposed in this paper are conducted. The results of the simulations show that the proposed method is more accurate, and the identified values of angle parameters in modified Denavit and Hartenberg model are closer to their real values. Compared with the conventional calibration method in experiments, the proposed method decreases the maximum and mean errors by 19.9% and 13.4%, respectively.

Originality/value

A new measurement principle and a novel calibration method are proposed. The proposed method can simultaneously identify joint stiffness, kinematic and hand-eye parameters and obtain not only higher measurement accuracy but also higher parameter identification accuracy, which is suitable for on-site calibration.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 April 2019

Guozhi Li, Fuhai Zhang, Yili Fu and Shuguo Wang

The purpose of this paper is to propose an error model for serial robot kinematic calibration based on dual quaternions.

Abstract

Purpose

The purpose of this paper is to propose an error model for serial robot kinematic calibration based on dual quaternions.

Design/methodology/approach

The dual quaternions are the combination of dual-number theory and quaternion algebra, which means that they can represent spatial transformation. The dual quaternions can represent the screw displacement in a compact and efficient way, so that they are used for the kinematic analysis of serial robot. The error model proposed in this paper is derived from the forward kinematic equations via using dual quaternion algebra. The full pose measurements are considered to apply the error model to the serial robot by using Leica Geosystems Absolute Tracker (AT960) and tracker machine control (T-MAC) probe.

Findings

Two kinematic-parameter identification algorithms are derived from the proposed error model based on dual quaternions, and they can be used for serial robot calibration. The error model uses Denavit–Hartenberg (DH) notation in the kinematic analysis, so that it gives the intuitive geometrical meaning of the kinematic parameters. The absolute tracker system can measure the position and orientation of the end-effector (EE) simultaneously via using T-MAC.

Originality/value

The error model formulated by dual quaternion algebra contains all the basic geometrical parameters of serial robot during the kinematic calibration process. The vector of dual quaternion error can be used as an indicator to represent the trend of error change of robot’s EE between the nominal value and the actual value. The accuracy of the EE is improved after nearly 20 measurements in the experiment conduct on robot SDA5F. The simulation and experiment verify the effectiveness of the error model and the calibration algorithms.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 January 2010

Joonyoung Kim, Sung‐Rak Kim, Soo‐Jong Kim and Dong‐Hyeok Kim

The purpose of this paper is to maximize the speed of industrial robots by obtaining the minimum‐time trajectories that satisfy various constraints commonly given in the…

1231

Abstract

Purpose

The purpose of this paper is to maximize the speed of industrial robots by obtaining the minimum‐time trajectories that satisfy various constraints commonly given in the application of industrial robots.

Design/methodology/approach

The method utilizes the dynamic model of the robot manipulators to find the maximum kinematic constraints that are used with conventional trajectory patterns, such as trapezoidal velocity profiles and cubic polynomial functions.

Findings

The experimental results demonstrate that the proposed method can decrease the motion times substantially compared with the conventional kinematic method.

Practical implications

Although the method used a dynamic model, the computational burden is minimized by calculating dynamics only at certain points, enabling implementation of the method online. The proposed method is tested on more than 40 different types of robots made by Hyundai Heavy Industries Co. Ltd (HHI). The method is successfully implemented in Hi5, a new generation of HHI robot controller.

Originality/value

The paper shows that the method is computationally very simple compared with other minimum‐time trajectory‐planning methods, thus making it suitable for online implementation.

Details

Industrial Robot: An International Journal, vol. 37 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2004

Nicolas Andreff, Pierre Renaud, Philippe Martinet and Franc¸ois Pierrot

Presents the kinematic calibration of an H4 parallel prototype robot using a vision‐based measuring device. Calibration is performed according to the inverse kinematic model method

Abstract

Presents the kinematic calibration of an H4 parallel prototype robot using a vision‐based measuring device. Calibration is performed according to the inverse kinematic model method, using first the design model then a model developed for calibration purpose. To do so, the end‐effector pose (i.e. position and orientation) has to be measured with the utmost accuracy. Thus, first the practical accuracy of the low‐cost vision‐based measuring system is evaluated to have a precision in the order of magnitude of 10μ_it;m and 10−3° for a 1,024×768 pixel CCD camera. Second, the prototype is calibrated using the easy‐to‐install vision system, yielding a final positioning accuracy of the end‐effector reduced from more than 1cm down to less than 0.5mm. Also provides a discussion on the use of such a method on commercial systems.

Details

Industrial Robot: An International Journal, vol. 31 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 May 2016

Yanbing Ni, Biao Zhang, Wenxia Guo and Cuiyan Shao

The purpose of this paper is to develop a means of the kinematic calibration of a parallel manipulator with full-circle rotation.

Abstract

Purpose

The purpose of this paper is to develop a means of the kinematic calibration of a parallel manipulator with full-circle rotation.

Design/methodology/approach

An error-mapping model based on the space vector chain is formulated and parameter identification is proposed based on double ball-bar (DBB) measurements. The measurement trajectory is determined by the motion characteristics of this mechanism and whether the error sources can be identified. Error compensation is proposed by modifying the inputs, and a two-step kinematic calibration method is implemented.

Findings

The simulation and experiment results show that this kinematic calibration method is effective. The DBB length errors and the position errors in the end-effector of the parallel manipulator with full-circle rotation are greatly reduced after error compensation.

Originality/value

By establishing the mapping relationship between measured error data and geometric error sources, the error parameters of this mechanism are identified; thus, the pose errors are unnecessary to be measured directly. The effectiveness of the kinematic calibration method is verified by computer simulation and experiment. This proposed calibration method can help the novel parallel manipulator with full-circle rotation and other similar parallel mechanisms to improve their accuracy.

Details

Industrial Robot: An International Journal, vol. 43 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 March 2014

Wei Wang, Gang Wang and Chao Yun

Calibrating kinematic parameters is one of the efficient ways to improve the robot's positioning accuracy. A method based on the product-of-exponential (POE) formula to calibrate…

Abstract

Purpose

Calibrating kinematic parameters is one of the efficient ways to improve the robot's positioning accuracy. A method based on the product-of-exponential (POE) formula to calibrate the kinematic parameters of serial industrial robots is proposed. The paper aims to discuss these issues.

Design/methodology/approach

The forward kinematics is established, and the general positioning error model is deduced in an explicit expression. A simplified model of robot's positioning error is established as both the error of reference configuration and the error of rigid displacement of the base coordinating system with respect to the measuring coordinating system are equivalently transferred to the zero position errors of the robot's joints. A practical calibration model is forwarded only requiring 3D measuring based on least-squares algorithm. The calibration system and strategy for calibrating kinematic parameters are designed.

Findings

By the two geometrical constrains between the twist coordinates, each joint twist only has four independent coordinates. Due to the equivalent error model, the zero position error of each joint can cover the error of reference configuration and rigid displacement of the robot base coordinating system with respect to the measuring coordinating system. The appropriate number of independent kinematic parameters of each joint to be calibrated is five.

Originality/value

It is proved by a group of calibration experiments that the calibration method is well conditioned and can be used to promote the level of absolute error of end effector of industrial robot to 2.2 mm.

Details

Industrial Robot: An International Journal, vol. 41 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 May 2014

Mehdi Dehghani, Mahdi Ahmadi, Alireza Khayatian, Mohamad Eghtesad and Mehran Yazdi

The purpose of this paper is to present a vision-based method for the kinematic calibration of a six-degrees-of-freedom parallel robot named Hexa using only one Universal Serial…

Abstract

Purpose

The purpose of this paper is to present a vision-based method for the kinematic calibration of a six-degrees-of-freedom parallel robot named Hexa using only one Universal Serial Bus (USB) camera and a chess pattern installed on the robot's mobile platform. Such an approach avoids using any internal sensors or complex three-dimensional measurement systems to obtain the pose (position/orientation) of the robot's end-effector or the joint coordinates.

Design/methodology/approach

The setup of the proposed method is very simple; only one USB camera connected to a laptop computer is needed and no contact with the robot is necessary during the calibration procedure. For camera modeling, a pinhole model is used; it is then modified by considering some distortion coefficients. Intrinsic and extrinsic parameters and the distortion coefficients are found by an offline minimization algorithm. The chess pattern makes image corner detection very straightforward; this detection leads to finding the camera and then the kinematic parameters. To carry out the calibration procedure, several trajectories are run (the results of two of them are presented here) and sufficient specifications of the poses (positions/orientations) are calculated to find the kinematic parameters of the robot. Experimental results obtained when applying the calibration procedure on a Hexa parallel robot show that vision-based kinematic calibration yields enhanced and efficient positioning accuracy. After successful calibration and addition of an appropriate control scheme, the robot has been considered as a color-painting prototype robot to serve in relevant industries.

Findings

Experimental results obtained when applying the calibration procedure on a Hexa parallel robot show that vision-based kinematic calibration yields enhanced and efficient positioning accuracy.

Originality/value

The enhanced results show the advantages of this method in comparison with the previous calibration methods.

Details

Industrial Robot: An International Journal, vol. 41 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 3000