Search results

1 – 1 of 1
Open Access
Article
Publication date: 25 July 2022

Fung Yuen Chin, Kong Hoong Lem and Khye Mun Wong

The amount of features in handwritten digit data is often very large due to the different aspects in personal handwriting, leading to high-dimensional data. Therefore, the…

1225

Abstract

Purpose

The amount of features in handwritten digit data is often very large due to the different aspects in personal handwriting, leading to high-dimensional data. Therefore, the employment of a feature selection algorithm becomes crucial for successful classification modeling, because the inclusion of irrelevant or redundant features can mislead the modeling algorithms, resulting in overfitting and decrease in efficiency.

Design/methodology/approach

The minimum redundancy and maximum relevance (mRMR) and the recursive feature elimination (RFE) are two frequently used feature selection algorithms. While mRMR is capable of identifying a subset of features that are highly relevant to the targeted classification variable, mRMR still carries the weakness of capturing redundant features along with the algorithm. On the other hand, RFE is flawed by the fact that those features selected by RFE are not ranked by importance, albeit RFE can effectively eliminate the less important features and exclude redundant features.

Findings

The hybrid method was exemplified in a binary classification between digits “4” and “9” and between digits “6” and “8” from a multiple features dataset. The result showed that the hybrid mRMR +  support vector machine recursive feature elimination (SVMRFE) is better than both the sole support vector machine (SVM) and mRMR.

Originality/value

In view of the respective strength and deficiency mRMR and RFE, this study combined both these methods and used an SVM as the underlying classifier anticipating the mRMR to make an excellent complement to the SVMRFE.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 1 of 1