Search results

1 – 10 of 30
Article
Publication date: 30 November 2021

Khalil Alipour and Bahram Tarvirdizadeh

The aim of the current study is proposing a novel framework to attain the optimum value of a flexible arm manipulator parameters for payload launching missions.

Abstract

Purpose

The aim of the current study is proposing a novel framework to attain the optimum value of a flexible arm manipulator parameters for payload launching missions.

Design/methodology/approach

The proposed scheme is based on optimal control approach and combines direct and indirect search methods while considering the actuator capacity.

Findings

Three nonlinear parameter-optimization problems will be solved to illustrate how the proposed algorithm can be exploited. Employing variational based nonlinear optimal control within the suggested framework, the answer of these problems is highly intertwined to the solution of a set of differential equations with split boundary values. To solve the obtained boundary value problem (BVP), the related solver of MATLAB® software, bvp6c, will be employed. The achieved simulation results support the worth of the developed procedure.

Originality/value

For the first time, the optimal parameters of a flexible link robot for object launching are found in the current research. In addition, the actuator saturation limits are considered which enhances the applicability of the suggested method in the real world applications.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 September 2019

Pouya Panahandeh, Khalil Alipour, Bahram Tarvirdizadeh and Alireza Hadi

Trajectory tracking is a common problem in the field of mobile robots which has attracted a lot of attention in the past two decades. Therefore, besides the search for new…

Abstract

Purpose

Trajectory tracking is a common problem in the field of mobile robots which has attracted a lot of attention in the past two decades. Therefore, besides the search for new controllers to achieve a better performance, improvement and optimization of existing control rules are necessary. Trajectory tracking control laws usually contain constant gains which affect greatly the robot’s performance.

Design/methodology/approach

In this paper, a method based on neural networks is introduced to automatically upgrade the gains of a well-known trajectory tracking controller of wheeled mobile robots. The suggested method speeds up the convergence rate of the main controller.

Findings

Simulations and experiments are performed to assess the ability of the suggested scheme. The obtained results show the effectiveness of the proposed method.

Originality/value

In this paper, a method based on neural networks is introduced to automatically upgrade the gains of a well-known trajectory tracking controller of wheeled mobile robots. The suggested method speeds up the convergence rate of the main controller.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 May 2019

Payman Joudzadeh, Alireza Hadi, Bahram Tarvirdizadeh, Danial Borooghani and Khalil Alipour

This paper aims to deal with the development of a novel lower limb exoskeleton to assist disabled people in stair ascending.

Abstract

Purpose

This paper aims to deal with the development of a novel lower limb exoskeleton to assist disabled people in stair ascending.

Design/methodology/approach

For this purpose, a novel design of a mixture of motors and cables has been proposed for users to wear them easily and show the application of the system in stair climbing.

Findings

One of the prominences of this study is the provided robot design where four joints are actuated with only two motors; each motor actuates either the knees or ankles. Another advantage of the designed system is that with motors placed in a backpack, the knee braces can be worn under clothes to be concealed. Finally, the system performance is evaluated using electromyography (EMG) signals showing 28 per cent reduction in energy consumption of related muscles.

Originality/value

This investigation deals with the development of a novel lower limb exoskeleton to assist disabled people in stair ascending.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 October 2018

Saber Kazeminasab, Alireza Hadi, Khalil Alipour and Mohammad Elahinia

Many people suffer from injuries related to their hand. This research aims to focus on the improvement of the previously developed smart glove by using position and force control…

Abstract

Purpose

Many people suffer from injuries related to their hand. This research aims to focus on the improvement of the previously developed smart glove by using position and force control algorithms. The new smart glove may be used for both physiotherapy and assistance.

Design/methodology/approach

The proposed robot uses shape memory alloy (SMA) actuators coupled to an under-actuated tendon-driven mechanism. The proposed device, which is presented as a wearable glove attached to an actuation module, is capable of exerting extremely high forces to grasp objects in various hand configurations. The device’s performance is studied in physiotherapy and object manipulation tasks. In the physiotherapy mode, hand motion frequency is controlled, whereas the grasping force is controlled in the object manipulation mode. To simulate the proposed system behavior, the kinematic and dynamic equations of the proposed system have been derived.

Findings

The achieved results verify that the system is suitable to be used as part of a rehabilitation device in which it can flex and extend fingers with accurate trajectories and grasp objects efficiently. Specifically, it will be shown that using six SMA wires with the diameter of 0.25 mm, the proposed robot can provide 45 N gripping force for the patients.

Originality/value

The proposed robot uses SMA actuators and an under-actuated tendon-driven mechanism. The resulted robotic system, which is presented as a wearable glove attached to an actuation module, is capable of exerting extremely high force levels to grasp objects in various hand configurations. It is shown that the motion and exerted force of the robot may be controlled effectively in practice.

Details

Industrial Robot: An International Journal, vol. 45 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 March 2011

Khalil Alipour and S. Ali A. Moosavian

A suspended wheeled mobile robot (SWMR) that consists of one or more manipulators can be exploited in various environmental conditions such as uneven surfaces. The purpose of this…

Abstract

Purpose

A suspended wheeled mobile robot (SWMR) that consists of one or more manipulators can be exploited in various environmental conditions such as uneven surfaces. The purpose of this paper is to discuss the requirements for stable motion planning of such robotic systems to perform heavy object manipulation tasks.

Design/methodology/approach

First, a systematic procedure for dynamics modelling of such complicated systems for planar motion is presented and verified using ADAMS simulation software. Next, based on the new dynamic moment‐height stability (MHS) measure, the stability of such systems will be investigated using the obtained dynamics. To this end, introducing the concept of a virtual frame, the obtained model of SWMR has been employed for investigating the effect of the base suspension characteristics as well as terrain roughness on the stability of the system. Next, the stability evaluation of the system is investigated after toppling down which has been rarely addressed in the literature. In addition, using the aforementioned model, the effect of stiffness is examined after instability.

Findings

First, a systematic procedure for dynamics modelling of such complicated systems for planar motion is presented and verified using ADAMS simulation software. Next, based on the new dynamic MHS measure, the stability of such systems will be investigated using the obtained dynamics. To this end, introducing the concept of a virtual frame, the obtained model of SWMR has been employed for investigating the effect of the base suspension characteristics as well as terrain roughness on the stability of the system. Next, the stability evaluation of the system is investigated after toppling down which has been rarely addressed in the literature. In addition, using the aforementioned model, the effect of stiffness is examined after instability.

Originality/value

A general procedure for dynamics modelling of SWMRs is presented. To verify the obtained dynamics model, another model for the considered system has been developed by ADAMS software. Next, using the obtained dynamics, the postural stability of such systems is investigated, based on the new postural MHS measure extended for SWMRs. The obtained simulation results show that by decreasing the stiffness coefficients of suspension subsystem the stability of the system weakens.

Details

Industrial Robot: An International Journal, vol. 38 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 July 2016

Bahram Tarvirdizadeh, Khalil Alipour and Alireza Hadi

– The purpose of this paper is to focus on an online closed-loop (CL) approach for performing dynamic object manipulation (DOM) by a flexible link manipulator.

Abstract

Purpose

The purpose of this paper is to focus on an online closed-loop (CL) approach for performing dynamic object manipulation (DOM) by a flexible link manipulator.

Design/methodology/approach

Toward above goal, a neural network and optimal control are integrated in a closed-loop structure, to achieve a robust control for online DOM applications. Additionally, an elegant novel numerical solution method will be developed which can handle the split boundary value problem resulted from DOM mission requirements for a wide range of boundary conditions.

Findings

The obtained simulation results reveal the effectiveness of both proposed innovative numerical solution technique and control structure for online object manipulation purposes using flexible manipulators.

Originality/value

The object manipulation problem has previously been studied, however, for the first time its accomplishment by flexible link manipulators was addressed just in offline form considering an open-loop control structure (Tarvirdizadeh and Yousefi-Koma, 2012). As an extension of Tarvirdizadeh and Yousefi-Koma (2012), the current research, consequently, focusses on a numerical solution and a CL approach for performing DOM by a flexible link manipulator.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 May 2011

Mohammad Hadi Amoozgar, Khalil Alipour and Seyed Hossein Sadati

This paper seeks to present a novel approach for formation control of non‐holonomic wheeled mobile robots (WMRs). The use of a general geometrical structure has led the considered…

Abstract

Purpose

This paper seeks to present a novel approach for formation control of non‐holonomic wheeled mobile robots (WMRs). The use of a general geometrical structure has led the considered robotic team form any desired configuration. Although various methodologies have been suggested for solving such formation control problem in the literature, the proposed kinematical method of the present investigation has several advantages in terms of its robustness, tracking performance, and superior energy consumption due to the fuzzy logic scheme developed.

Design/methodology/approach

In an attempt to make the follower robot to assume the proper orientation, a new concept is presented which defines an appropriate heading angle. This concept is based on the natural human behavior as corresponds to situations of tracking a certain trajectory. The proposed heading angle planner is based on a two‐stage fuzzy logic system, providing appropriate heading angles for the mobile robot at each instant. In order to adjust the linear/angular velocity of the robots then, two further fuzzy controllers are devised.

Findings

The results obtained from the computer simulation studies reveal the merits as well as effectiveness of the proposed method for formation control of a group of WMRs in the presence of usual control input constraints, noisy sensor data, and external disturbances.

Originality/value

A novel method based on a fuzzy leader‐follower method is presented for the formation control of a group of robots.

Details

Industrial Robot: An International Journal, vol. 38 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 January 2016

Mostafa Mahmoodi, Khalil Alipour and Hadi Beik Mohammadi

The purpose of this paper is to propose an efficient method, called kinodynamic velocity obstacle (KidVO), for motion planning of omnimobile robots considering kinematic and…

Abstract

Purpose

The purpose of this paper is to propose an efficient method, called kinodynamic velocity obstacle (KidVO), for motion planning of omnimobile robots considering kinematic and dynamic constraints (KDCs).

Design/methodology/approach

The suggested method improves generalized velocity obstacle (GVO) approach by a systematic selection of proper time horizon. Selection procedure of the time horizon is based on kinematical and dynamical restrictions of the robot. Toward this aim, an omnimobile robot with a general geometry is taken into account, and the admissible velocity and acceleration cones reflecting KDCs are derived, respectively. To prove the advantages of the suggested planning method, its performance is compared with GVOs, the so-called Hamilton-Jacobi-Bellman equation and the rapidly exploring random tree.

Findings

The obtained results of the presented scenarios which contain both computer and real-world experiments for complicated crowded environments indicate the merits of the suggested methodology in terms of its near-optimal behavior, successful obstacle avoidance both in static and dynamic environments and reaching to the goal pose.

Originality/value

This paper proposes a novel method for online motion planning of omnimobile robots in dynamic environments while considering the real capabilities of the robot.

Details

Industrial Robot: An International Journal, vol. 43 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 August 2008

Peng Gaoliang, He Xu, Yu Haiquan, Hou Xin and Khalil Alipour

The virtual design environment offers users an opportunity to interact with a virtual prototyping rather than physical models and to build a fixture configuration in a realistic…

Abstract

Purpose

The virtual design environment offers users an opportunity to interact with a virtual prototyping rather than physical models and to build a fixture configuration in a realistic way. But the virtual reality (VR) environment tends to be inaccurate because humans have difficulty in performing precise positioning tasks. Therefore, it is necessary to implement precise object manipulation methods for assembly and disassembly activities, so that users can perform modular fixture configuration design efficiently in VE. The purpose of this paper is to develop a VR‐based modular fixture assembly design system, which supports the design and assembly of modular fixture configuration in a virtual environment.

Design/methodology/approach

Geometric constraint‐based method is utilized to represent and treat the assembly relationship between modular fixture elements. The paper presents a hybrid method of rule‐based reasoning and fuzzy comprehensive judgment to capture the user's operation intent and recognize geometric constraint. Through degrees of freedom based analysis, a mathematical matrix is presented for representing and reducing allowable motion of fixture elements, and a constraint‐based motion navigation approach is proposed to ensure that the manipulation of a fixture component not violate that the existing constraints.

Findings

The paper finds that the proposed techniques are applicable to the convenient manipulation and accurate positioning of fixture elements in a virtual environment.

Practical implications

Component manipulation plays a key role in interactive virtual assembly design. The proposed approach in this paper enables interactive assembly design of modular fixture in virtual environment.

Originality/value

This paper presents a geometric constraint‐based approach that realizes automatic assembly relationship recognition, constraint solving and motion navigation for interactive modular fixture assembly design in a virtual environment.

Details

Assembly Automation, vol. 28 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 October 2011

He Xu, Zhenyu Zhang, Khalil Alipour, Kai Xue and X.Z. Gao

Wheel‐terrain interaction has hardly been taken into consideration in the process of conventional mobile robot design, but its importance has been reflected increasingly towards…

Abstract

Purpose

Wheel‐terrain interaction has hardly been taken into consideration in the process of conventional mobile robot design, but its importance has been reflected increasingly towards these categories of mobile robots in rough sandy terrain or obstacle‐dense ground, as the first performance index in this situation is the trafficability of robot whose propulsion is uniquely generated by wheel‐terrain interaction. Consequently, it is valuable to find an optimized design method when the terrain and robot itself are regarded simultaneously. The purpose of this paper is to present a novel and reasonable design approach to mobile robot in sandy terrain.

Design/methodology/approach

Leading to some conflicted performance indices of robot, terramechanics describes the non‐linear characteristics in wheel‐terrain interaction mathematically, therefore, trade‐offs must be implemented to get a proper solution by multi‐objective optimization (MOO). In this paper, a five‐wheeled drive and five‐wheeled steering (5WD5WS) reconfigurable mobile robot is taken as demonstration with taxonomy of total‐symmetrical, partial‐symmetrical and asymmetrical prototypes. After function modeling, the MOO is carried out via iSIGHT‐FD using NCGA (Neighborhood Cultivation Genetic Algorithm) to minimize the mass, wheel resistance and maximize the static stability simultaneously.

Findings

After MOO, a compact and light weighted asymmetrical prototype is obtained with better trafficability, and other prototypes can produce diversified configurations to meet specific requirements. Significantly reduced masses (about 17 kg) enhance the grade‐ability when robot is in rough terrain. Performed real‐world experiments have also verified these prototypes.

Originality/value

The paper presents a new design approach for a mobile robot which focuses on both robot and terrain simultaneously with respect to conflicted factors. To unveil the insight relation of these factors, MOO is an effective tool to get a trade‐offs prototype.

Details

Industrial Robot: An International Journal, vol. 38 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 30