Search results

1 – 1 of 1
To view the access options for this content please click here
Article
Publication date: 5 December 2017

Rabeb Faleh, Sami Gomri, Mehdi Othman, Khalifa Aguir and Abdennaceur Kachouri

In this paper, a novel hybrid approach aimed at solving the problem of cross-selectivity of gases in electronic nose (E-nose) using the combination classifiers of support…

Abstract

Purpose

In this paper, a novel hybrid approach aimed at solving the problem of cross-selectivity of gases in electronic nose (E-nose) using the combination classifiers of support vector machine (SVM) and k-nearest neighbors (KNN) methods was proposed.

Design/methodology/approach

First, three WO3 sensors E-nose system was used for data acquisition to detect three gases, namely, ozone, ethanol and acetone. Then, two transient parameters, derivate and integral, were extracted for each gas response. Next, the principal component analysis (PCA) was been applied to extract the most relevant sensor data and dimensionality reduction. The new coordinates calculated by PCA were used as inputs for classification by the SVM method. Finally, the classification achieved by the KNN method was carried out to calculate only the support vectors (SVs), not all the data.

Findings

This work has proved that the proposed fusion method led to the highest classification rate (100 per cent) compared to the accuracy of the individual classifiers: KNN, SVM-linear, SVM-RBF, SVM-polynomial that present, respectively, 89, 75.2, 80 and 79.9 per cent as classification rate.

Originality/value

The authors propose a fusion classifier approach to improve the classification rate. In this method, the extracted features are projected into the PCA subspace to reduce the dimensionality. Then, the obtained principal components are introduced to the SVM classifier and calculated SVs which will be used in the KNN method.

Details

Sensor Review, vol. 38 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 1 of 1