Search results

1 – 6 of 6
Article
Publication date: 23 January 2019

Mayank Shrivastava, Anthony Abu, Rajesh Dhakal and Peter Moss

This paper aims to describe current trends in probabilistic structural fire engineering and provides a comprehensive summary of the state-of-the-art of performance-based…

Abstract

Purpose

This paper aims to describe current trends in probabilistic structural fire engineering and provides a comprehensive summary of the state-of-the-art of performance-based structural fire engineering (PSFE).

Design/methodology/approach

PSFE has been introduced to overcome the limitations of current conventional design approaches used for the design of fire-exposed structures, which investigate assumed worst-case fire scenarios and include multiple thermal and structural analyses. PSFE permits buildings to be designed in relation to a level of life safety or economic loss that may occur in future fire events with the help of a probabilistic approach.

Findings

This paper brings together existing research on various sources of uncertainty in probabilistic structural fire engineering, such as elements affecting post-flashover fire development, material properties, fire models, fire severity, analysis methods and structural reliability.

Originality/value

Prediction of economic loss would depend on the extent of damage, which is further dependent on the structural response. The representative prediction of structural behaviour would depend on the precise quantification of the fire hazard. The incorporation of major uncertainty sources in probabilistic structural fire engineering is explained, and the detailed description of a pioneering analysis method called incremental fire analysis is presented.

Details

Journal of Structural Fire Engineering, vol. 10 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 25 September 2019

Venkatesh Kodur, Puneet Kumar and Muhammad Masood Rafi

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims…

88887

Abstract

Purpose

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims to present a critical review of current fire protection measures and their applicability to address current challenges relating to fire hazards in buildings.

Design/methodology/approach

To overcome fire hazards in buildings, impact of fire hazards is also reviewed to set the context for fire protection measures. Based on the review, an integrated framework for mitigation of fire hazards is proposed. The proposed framework involves enhancement of fire safety in four key areas: fire protection features in buildings, regulation and enforcement, consumer awareness and technology and resources advancement. Detailed strategies on improving fire safety in buildings in these four key areas are presented, and future research and training needs are identified.

Findings

Current fire protection measures lead to an unquantified level of fire safety in buildings, provide minimal strategies to mitigate fire hazard and do not account for contemporary fire hazard issues. Implementing key measures that include reliable fire protection systems, proper regulation and enforcement of building code provisions, enhancement of public awareness and proper use of technology and resources is key to mitigating fire hazard in buildings. Major research and training required to improve fire safety in buildings include developing cost-effective fire suppression systems and rational fire design approaches, characterizing new materials and developing performance-based codes.

Practical implications

The proposed framework encompasses both prevention and management of fire hazard. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified, and detailed strategies are provided to address these limitations using proposed fire safety framework.

Social implications

Fire represents a severe hazard in both developing and developed countries and poses significant threat to life, structure, property and environment. The proposed framework has social implications as it addresses some of the current challenges relating to fire hazard in buildings and will enhance overall fire safety.

Originality/value

The novelty of proposed framework lies in encompassing both prevention and management of fire hazard. This is unlike current fire safety improvement strategies, which focus only on improving fire protection features in buildings (i.e. managing impact of fire hazard) using performance-based codes. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified and detailed strategies are provided to address these limitations using proposed fire safety framework. Special emphasis is given to cost-effectiveness of proposed strategies, and research and training needs for further enhancing building fire safety are identified.

Details

PSU Research Review, vol. 4 no. 1
Type: Research Article
ISSN: 2399-1747

Keywords

Article
Publication date: 6 September 2021

Kristian Dahl Hertz, Lars Schiøtt Sørensen and Luisa Giuliani

This study aims to analyze and discuss the key design assumptions needed for design of car parks in steel, to highlight the impact that the increased fire loads introduced by…

Abstract

Purpose

This study aims to analyze and discuss the key design assumptions needed for design of car parks in steel, to highlight the impact that the increased fire loads introduced by modern cars and changes in the fire dynamics have on the design, such as fire spread leading to non-localized fires.

Design/methodology/approach

In particular, a reliable fire load density to be used for structural design of car park structures is assessed, based on investigations of the fire loads of modern cars. Based on knowledge of fire load and fire performance of cars, the consequences on the fire safety design of steel structures are presented.

Findings

Design recommendation about fire load density and fire protection of common steel profiles are given. Finally, the proposed design is compared with a design practice that has been applied in many instances for car parks constructed with unprotected steel, and recommendations for a reliable design process are provided.

Originality/value

Numerous car park buildings have recently been designed of steel structures without passive or active fire protection. The key assumptions that makes possible such design are local fire scenarios, outdated values of the car fire load and utilization of the ultimate steel strength. This paper identifies the shortcomings of such key assumptions, indicating the need for revisiting the methods and possibly even checking the analyses carried out for some already-built car parks.

Details

Journal of Structural Fire Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 10 September 2021

Mastura Jaafar, Nuzaihan Aras Agus Salim, Naziah Muhamad Salleh, Mohd Zailan Sulieman, Norhidayah Md Ulang and Andrew Ebekozien

Globally, several studies have shown that hospital building is charged with multiple inherent risks because a large number of users are vulnerable in tragic events. Thus, the need…

Abstract

Purpose

Globally, several studies have shown that hospital building is charged with multiple inherent risks because a large number of users are vulnerable in tragic events. Thus, the need for the fire safety management plan (FSMP) has been proved as an instrument to mitigate fire and related risks in healthcare facilities. In Malaysia, FSMP regarding public healthcare building is yet to be explored in-depth. Therefore, this paper explores the information necessary to develop the FSMP framework for public hospital buildings.

Design/methodology/approach

The paper’s objectives were accomplished via a combination of five face-to-face interviews and observations of five selected public hospitals in Pulau Pinang, Malaysia. The five key participants were across the five public hospitals and collated data analysed through thematic analysis with the assistance of MAXQDA 2018.

Findings

Findings show that fire safety stakeholders practice system, fire safety action plan and fire risk management were the three main variables that promote fire safety programme and will improve FSMP for Malaysia’s public hospital buildings.

Research limitations/implications

This paper’s data collection is limited to Penang, Malaysia, and a qualitative research approach was used, but this does not deteriorate the strength of the findings. Future studies are needed to consider validating findings from this paper via a quantitative approach.

Practical implications

The suggested framework can be employed by Malaysia’s public hospital authorities as a guideline to mitigate fire hazards in the country’s healthcare facilities.

Originality/value

This paper is encouraging hospital operators and other key stakeholders to improve on their FSMP for healthcare buildings across Malaysia as part of the study implications.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 May 2020

Joakim Sandström

This paper aims to investigate the probability of unacceptable consequences from structural fire damage in a typical Scandinavian single-story steel frame building and discusses…

Abstract

Purpose

This paper aims to investigate the probability of unacceptable consequences from structural fire damage in a typical Scandinavian single-story steel frame building and discusses it in relation to life safety. This paper is a complement to the paper “Life safety in single-story steel frame buildings, Part I – deterministic design” by Sandström (2019) which considers the same design philosophy but with a probabilistic design approach.

Design/methodology/approach

The reliability of a single-story steel frame building is investigated by using crude Monte Carlo simulation by including consideration to the fire conditions.

Findings

The investigated building does not meet the safety levels as stipulated by EN 1990 for structural fire damage. However, by including consideration to the fire conditions in the compartment, it is shown that the life safety objective is not compromised by the structural fire damage, i.e. the structure remains intact as long as any individuals/firefighters can survive within the fire area compartment.

Originality/value

This paper presents practical application of a conceptual paper presenting a general approach to structural fire safety design and the life safety objective.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 April 2022

Mhd Anwar Orabi, Jin Qiu, Liming Jiang and Asif Usmani

Reinforced concrete slabs in fire have been heavily studied over the last three decades. However, most experimental and numerical work focuses on long-duration uniform exposure to…

Abstract

Purpose

Reinforced concrete slabs in fire have been heavily studied over the last three decades. However, most experimental and numerical work focuses on long-duration uniform exposure to standard fire. Considerably less effort has been put into investigating the response to localised fires that result in planarly non-uniform temperature distribution in the exposed elements.

Design/methodology/approach

In this paper, the OpenSees for Fire framework for modelling slabs under non-uniform fire exposure is presented, verified against numerical predictions by Abaqus and then validated against experimental tests. The thermal wrapper developed within OpenSees for Fire is then utilised to apply localised fire exposure to the validated slab models using the parameters of an experimentally observed localised fire. The effect of the smoke layer is also considered in this model and shown to significantly contribute to the thermal and thus thermo-mechanical response of slabs. Finally, the effect of localised fire heat release rate (HRR) and boundary conditions are studied.

Findings

The analysis showed that boundary conditions are very important for the response of slabs subject to localised fire, and expansive strains may be accommodated as deflections without severely damaging the slab by considering the lateral restraint.

Originality/value

This work demonstrates the capabilities of OpenSees for Fire in modelling structural behaviours subjected to non-uniform fire conditions and investigates the damage pattens of flat slabs exposed to localised fires. It is an advancing step towards understanding structural responses to realistic fires.

Details

Journal of Structural Fire Engineering, vol. 14 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 6 of 6