Search results

1 – 10 of over 19000
Article
Publication date: 3 April 2017

Zhoupeng Han, Rong Mo, Zhiyong Chang, Li Hao and Weilong Niu

The purpose of this paper is to find a method for key assembly structure identification in complex mechanical assembly. Three-dimensional model reuse plays an increasingly…

Abstract

Purpose

The purpose of this paper is to find a method for key assembly structure identification in complex mechanical assembly. Three-dimensional model reuse plays an increasingly important role in complex product design and innovative design. Assembly model has become important resource of models reuse in enterprises, which contains certain function assembly structures. These assembly structures implicating plenty of design intent and design experience knowledge can be used to support function-structure design, modular design reuse and semantics analysis for complex product.

Design/methodology/approach

A method for identifying key assembly structures in assembly model is presented from the viewpoint of assembly topology and multi-source attributes. First, assembly model is represented based on complex network. Then, a two-level evaluation model is put forward to evaluate importance of parts assembled, and the key function parts in assembly can be obtained. After that, on the basis of the function parts, a heuristic algorithm upon breadth first searching is given to identify key assembly structures.

Findings

The method could be used to evaluate key function parts and identify key assembly structures in complex mechanical assembly according to the specific circumstances.

Practical implications

The method can not only help designers find the key assembly structure in complex mechanical assembly model, facilitate the function-structure designing and semantics analyzing, and thereby improve the efficiency of product knowledge reuse, but also assist in analyzing influence scope of key function part changing and optimization of the assembly process for complex mechanical assembly.

Originality/value

The paper is the first to propose a method for key assembly structure identification in complex mechanical assembly, where the key function parts can be evaluated through a two-level evaluation model, and the key assembly structures are identified automatically based on complex network.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 November 2021

Zhoupeng Han, Chenkai Tian, Zihan Zhou and Qilong Yuan

Complex mechanical 3D computer-aided design (CAD) model embodies rich implicit design knowledge. Through discovering the key function parts and key function module in 3D CAD…

Abstract

Purpose

Complex mechanical 3D computer-aided design (CAD) model embodies rich implicit design knowledge. Through discovering the key function parts and key function module in 3D CAD assembly model in advance, it can promote the designers’ understanding and reuse efficiency of 3D assembly model in design reuse.

Design/methodology/approach

An approach for discovering key function module in complex mechanical 3D CAD assembly model is proposed. First, assembly network for 3D CAD assembly model is constructed, where the topology structure characteristics of 3D assembly model are analyzed based on complex network centrality. The degree centrality, closeness centrality, betweenness centrality and mutual information of node are used to evaluate the importance of the parts in 3D assembly model. Then, a multi-attribute decision model for part-node importance is established, and the comprehensive evaluation for key function parts in 3D assembly model is accomplished by combining Analytic Hierarchy Process and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). Subsequently, a community discovery of function module in assembly model-based Clauset–Newman–Moore (CNM)-Centrality is given in details. Finally, 3D CAD assembly model of worm gear reducer is taken as an example to verify the effectiveness and feasibility of proposed method.

Findings

The key function part in CAD assembly model is evaluated comprehensively considering assembly topology more objectively. In addition, the key function module containing key function part is discovered from CAD assembly model by using CNM-Centrality-based community discovery.

Practical implications

The approach can be used for discovering important design knowledge from complex CAD assembly model when reusing the assembly model. It can help designers capture and understand the design thinking and intent, improve the reuse efficiency and quality.

Originality/value

The paper first proposes an approach for discovering key function module in complex mechanical 3D CAD assembly model taking advantage of complex network theory, where the key function part is evaluated using node centrality and TOPSIS, and the key function module is identified based on community discovery.

Details

Assembly Automation, vol. 42 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 25 July 2019

Zhoupeng Han, Rong Mo, Haicheng Yang and Li Hao

Three-dimensional computer-aided design (CAD) assembly model has become important resource for design reuse in enterprises, which implicates plenty of design intent, assembly

Abstract

Purpose

Three-dimensional computer-aided design (CAD) assembly model has become important resource for design reuse in enterprises, which implicates plenty of design intent, assembly intent, design experience knowledge and functional structures. To acquire quickly CAD assembly models associated with specific functions by using product function requirement information in the product conceptual design phase for model reuse, this paper aims to find an approach for structure-function correlations analysis and functional semantic annotation of mechanical CAD assembly model before functional semantic-based assembly retrieval.

Design/methodology/approach

An approach for structure-function correlations analysis and functional semantic annotation of CAD assembly model is proposed. First, the product knowledge model is constructed based on ontology including design knowledge and function knowledge. Then, CAD assembly model is represented by part attributed adjacency graph and partitioned into multiple functional regions. Assembly region and flow-activity region are defined for structure-function correlations analysis of CAD assembly model. Meanwhile, the extraction process of assembly region and flow-activity region is given in detail. Furthermore, structure-function correlations analysis and functional semantic annotation are achieved by considering comprehensively assembly structure and assembled part shape structure in CAD assembly model. After that, a structure-function relation model is established based on polychromatic sets for expressing explicitly and formally relationships between functional structures, assembled parts and functional semantics.

Findings

The correlation between structure and function is analyzed effectively, and functional semantics corresponding to structures in CAD assembly model are labeled. Additionally, the relationships between functional structures, assembled parts and functional semantics can be described explicitly and formally.

Practical implications

The approach can be used to help designers accomplish functional semantic annotation of CAD assembly models in model repository, which provides support for functional semantic-based CAD assembly retrieval in the product conceptual design phase. These assembly models can be reused for product structure design and assembly process design.

Originality/value

The paper proposes a novel approach for structure-function correlations analysis and functional semantic annotation of mechanical CAD assembly model. Functional structures in assembly model are extracted and analyzed from the point of view of assembly structure and function part structure. Furthermore, the correlation relation between structures, assembled parts and functional semantics is expressed explicitly and formally based on polychromatic sets.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 April 2015

Liang Cheng, Qing Wang, Jiangxiong Li and Yinglin Ke

The aim of this paper is to present a new variation modeling method for fuselage structures in digital large aircraft assembly. The variation accumulated in a large aircraft…

Abstract

Purpose

The aim of this paper is to present a new variation modeling method for fuselage structures in digital large aircraft assembly. The variation accumulated in a large aircraft assembly process will influence the dimensional accuracy and fatigue life of airframes. However, in digital large aircraft assembly, variation analysis and modeling are still unresolved issues.

Design/methodology/approach

An elastic structure model based on beam elements is developed, which is an equivalent idealization of the actual complex structure. The stiffness matrix of the structure model is obtained by summing the stiffness matrices of the beam elements. For each typical stage of the aircraft digital assembly process, including positioning, coordinating, joining and releasing, variation models are built using the simplified structure model with respective loads and boundary conditions.

Findings

Using position errors and manufacturing errors as inputs, the variations for every stage of the assembly process can be calculated using the proposed model.

Practical implications

This method has been used in a large fuselage section assembly project, and the calculated results were shown to be a good prediction of variation in the actual assembly.

Originality/value

Although certain assumptions have been imposed, the proposed method provides a better understanding of the assembly process and creates an analytical foundation for further work on variation control and tolerance optimization.

Details

Assembly Automation, vol. 35 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 3 January 2018

Liang Cheng, Qing Wang, Jiangxiong Li and Yinglin Ke

This paper aims to present a modeling and analysis approach for multi-station aircraft assembly to predict assembly variation. The variation accumulated in the assembly process…

Abstract

Purpose

This paper aims to present a modeling and analysis approach for multi-station aircraft assembly to predict assembly variation. The variation accumulated in the assembly process will influence the dimensional accuracy and fatigue life of airframes. However, in digital large aircraft assembly, variation propagation analysis and modeling are still unresolved issues.

Design/methodology/approach

Based on an elastic structure model and variation model of multistage assembly in one station, the propagation of key characteristics, assembly reference and measurement errors are introduced. Moreover, the reposition and posture coordination are considered as major aspects. The reposition of assembly objects in a different assembly station is described using transformation and blocking of coefficient matrix in finite element equation. The posture coordination of the objects is described using homogeneous matrix multiplication. Then, the variation propagation model and analysis of large aircraft assembly are established using a discrete system diagram.

Findings

This modeling and analysis approach for multi-station aircraft assembly reveals the basic rule of variation propagation between adjacent assembly stations and can be used to predict assembly variation or potential dimension problems at a preliminary assembly phase.

Practical implications

The modeling and analysis approaches have been used in a transport aircraft project, and the calculated results were shown to be a good prediction of variation in the actual assembly.

Originality/value

Although certain simplifications and assumptions have been imposed, the proposed method provides a better understanding of the multi-station assembly process and creates an analytical foundation for further work on variation control and tolerance optimization.

Details

Assembly Automation, vol. 38 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 20 December 2017

Haidong Yu, Chunzhang Zhao, Bin Zheng and Hao Wang

Thin-walled structures inevitably always have manufacturing deviations, which affects the assembly quality of mechanical products. The assembly quality directly determines the…

Abstract

Purpose

Thin-walled structures inevitably always have manufacturing deviations, which affects the assembly quality of mechanical products. The assembly quality directly determines the performances, reliability and service life of the products. To achieve the automatic assembly of large-scale thin-walled structures, the sizing force of the structures with deviations should be calculated, and its assembling ability should be studied before assembly process. The purpose of this study is to establish a precise model to describe the deviations of structures and to study the variation propagation during assembly process.

Design/methodology/approach

Curved thin-walled structures are modeled by using the shell element via the absolute nodal coordinate formulation. Two typical deviation modes of the structure are defined. The generalized elastic force of shell elements with anisotropic materials is deduced based on a continuum mechanics approach to account for the geometric non-linearity. The quasi-static method is introduced to describe the assembly process. The effects of the deviation forms, geometrical parameters of the thin-walled structures and material properties on assembly quality are investigated numerically.

Findings

The geometric non-linearity of structure and anisotropy of materials strongly affect the variation propagation and the assembly quality. The transformation and accumulation effects of the deviations are apparent in the multiple assembly process. The constraints on the structures during assembly can reduce assembly deviation.

Originality/value

The plate element via the absolute nodal coordinate formulation is first introduced to the variation propagation analysis. Two typical shape deviation modes are defined. The elastic force of structures with anisotropic materials is deduced. The variation propagation during the assembly of structures with various geometrical and material parameters is investigated.

Article
Publication date: 3 April 2017

Sebastian Pashaei and Jan Olhager

The purpose of this paper is to explore how integral and modular product architectures influence the design properties of the global operations network.

Abstract

Purpose

The purpose of this paper is to explore how integral and modular product architectures influence the design properties of the global operations network.

Design/methodology/approach

The authors perform a multiple-case study of three global manufacturing companies, using interviews, seminars and structured questionnaires to identify ideal design properties.

Findings

The authors find that the choice of integral vs modular product architecture lead to significant differences in the preferred design properties of global operations networks concerning number of key technologies in-house, number of capable plants, focus at assembly plants, distance between assembly plant and market, and number of key supplier sites. Two of these were identified through this research, i.e. the number of capable plants and number of key supplier sites. The authors make a distinction between component and assembly plants, which adds detail to the understanding of the impact of product architecture on global operations. In addition, they develop five propositions that can be tested in further survey research.

Research limitations/implications

This study is restricted to three large manufacturing companies with global operations. However, the authors investigated both integral and modular products at these three companies and their associated global operations network. Still, further case or survey research involving a broader set of companies is warranted.

Practical implications

The key aspects for integral products are to have many key technologies in-house, concentration of production at a few capable plants, and economies-of-scale at assembly plants, while long distances between assembly plants and markets as well as few key supplier sites are acceptable. For modular products, the key aspects are many capable plants, economies-of-scope at assembly plants, short distance between assembly plants and markets, and many key supplier sites, while key technologies do not necessarily have to reside in-house – these can be accessed via key suppliers.

Originality/value

This paper is, to the authors’ knowledge, the first study on the explicit impact of product architecture on global operations networks, especially considering the internal manufacturing network.

Details

Journal of Manufacturing Technology Management, vol. 28 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 1 August 2016

Jie Zhang, Mi Zuo, Pan Wang, Jian-feng Yu and Yuan Li

Design is a time-consuming process for mechanical production. Some design structures frequently occur in different products and can be shared by multiple assembly models. Thus…

Abstract

Purpose

Design is a time-consuming process for mechanical production. Some design structures frequently occur in different products and can be shared by multiple assembly models. Thus, identifying these structures and adding them to a design knowledge library significantly speed up the design process. Most studies addressing this issue have traditionally focused on part models and have not extended to assembly models. This paper aims to find a method for common design structure discovery in assembly models.

Design/methodology/approach

Computer-aided design models have a great deal of valuable information defined by different designers in the design stages, especially the assembly models, which are actually carriers of information from multiple sources. In this paper, an approach for discovering a common design structure in assembly models is proposed by comparing information from multiple sources. Assembly models are first represented as attribute connection graphs (ACGs), in which we mainly consider topological information and various attributes of parts and connections. Then, we apply a K-means clustering method based on a similarity analysis of different attributes to classify the parts and connections and transform ACGs of assemblies into type code graphs (TCGs). After this, a discovery algorithm that improves upon fast frequent subgraph mining is used to identify common design structures in assemblies.

Findings

A new method was developed for discovering common design structures in assembly models, considering the similarity of information from multiple sources and allowing some differences in the details to keep both commonalities and individualities of common design structures.

Practical implications

Experiments show that the proposed method is efficient and can produce a reasonable result.

Originality/value

This discovery method helps designers find common design structures from different assembly models and shorten the design cycle. It is an effective approach to build a knowledge library for product design that can shorten the design cycle.

Details

Assembly Automation, vol. 36 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Book part
Publication date: 8 April 2005

Fredrik von Corswant

This paper deals with the organizing of interactive product development. Developing products in interaction between firms may provide benefits in terms of specialization…

Abstract

This paper deals with the organizing of interactive product development. Developing products in interaction between firms may provide benefits in terms of specialization, increased innovation, and possibilities to perform development activities in parallel. However, the differentiation of product development among a number of firms also implies that various dependencies need to be dealt with across firm boundaries. How dependencies may be dealt with across firms is related to how product development is organized. The purpose of the paper is to explore dependencies and how interactive product development may be organized with regard to these dependencies.

The analytical framework is based on the industrial network approach, and deals with the development of products in terms of adaptation and combination of heterogeneous resources. There are dependencies between resources, that is, they are embedded, implying that no resource can be developed in isolation. The characteristics of and dependencies related to four main categories of resources (products, production facilities, business units and business relationships) provide a basis for analyzing the organizing of interactive product development.

Three in-depth case studies are used to explore the organizing of interactive product development with regard to dependencies. The first two cases are based on the development of the electrical system and the seats for Volvo’s large car platform (P2), performed in interaction with Delphi and Lear respectively. The third case is based on the interaction between Scania and Dayco/DFC Tech for the development of various pipes and hoses for a new truck model.

The analysis is focused on what different dependencies the firms considered and dealt with, and how product development was organized with regard to these dependencies. It is concluded that there is a complex and dynamic pattern of dependencies that reaches far beyond the developed product as well as beyond individual business units. To deal with these dependencies, development may be organized in teams where several business units are represented. This enables interaction between different business units’ resource collections, which is important for resource adaptation as well as for innovation. The delimiting and relating functions of the team boundary are elaborated upon and it is argued that also teams may be regarded as actors. It is also concluded that a modular product structure may entail a modular organization with regard to the teams, though, interaction between business units and teams is needed. A strong connection between the technical structure and the organizational structure is identified and it is concluded that policies regarding the technical structure (e.g. concerning “carry-over”) cannot be separated from the management of the organizational structure (e.g. the supplier structure). The organizing of product development is in itself a complex and dynamic task that needs to be subject to interaction between business units.

Details

Managing Product Innovation
Type: Book
ISBN: 978-1-84950-311-2

Article
Publication date: 1 January 1985

Mary Weir and Jim Hughes

Introduction Consider a hi‐fi loudspeaker manufacturing company acquired on the brink of insolvency by an American multinational. The new owners discover with growing concern that…

Abstract

Introduction Consider a hi‐fi loudspeaker manufacturing company acquired on the brink of insolvency by an American multinational. The new owners discover with growing concern that the product range is obsolete, that manufacturing facilities are totally inadequate and that there is a complete absence of any real management substance or structure. They decide on the need to relocate urgently so as to provide continuity of supply at the very high — a market about to shrink at a rate unprecedented in its history.

Details

International Journal of Manpower, vol. 6 no. 1/2
Type: Research Article
ISSN: 0143-7720

1 – 10 of over 19000