Search results

1 – 10 of 72
Article
Publication date: 5 September 2016

Rjiba Sadika, Moez Soltani and Saloua Benammou

The purpose of this paper is to apply the Takagi-Sugeno (T-S) fuzzy model techniques in order to treat and classify textual data sets with and without noise. A comparative study…

Abstract

Purpose

The purpose of this paper is to apply the Takagi-Sugeno (T-S) fuzzy model techniques in order to treat and classify textual data sets with and without noise. A comparative study is done in order to select the most accurate T-S algorithm in the textual data sets.

Design/methodology/approach

From a survey about what has been termed the “Tunisian Revolution,” the authors collect a textual data set from a questionnaire targeted at students. Five clustering algorithms are mainly applied: the Gath-Geva (G-G) algorithm, the modified G-G algorithm, the fuzzy c-means algorithm and the kernel fuzzy c-means algorithm. The authors examine the performances of the four clustering algorithms and select the most reliable one to cluster textual data.

Findings

The proposed methodology was to cluster textual data based on the T-S fuzzy model. On one hand, the results obtained using the T-S models are in the form of numerical relationships between selected keywords and the rest of words constituting a text. Consequently, it allows the authors to interpret these results not only qualitatively but also quantitatively. On the other hand, the proposed method is applied for clustering text taking into account the noise.

Originality/value

The originality comes from the fact that the authors validate some economical results based on textual data, even if they have not been written by experts in the linguistic fields. In addition, the results obtained in this study are easy and simple to interpret by the analysts.

Article
Publication date: 2 January 2024

Xiumei Cai, Xi Yang and Chengmao Wu

Multi-view fuzzy clustering algorithms are not widely used in image segmentation, and many of these algorithms are lacking in robustness. The purpose of this paper is to…

Abstract

Purpose

Multi-view fuzzy clustering algorithms are not widely used in image segmentation, and many of these algorithms are lacking in robustness. The purpose of this paper is to investigate a new algorithm that can segment the image better and retain as much detailed information about the image as possible when segmenting noisy images.

Design/methodology/approach

The authors present a novel multi-view fuzzy c-means (FCM) clustering algorithm that includes an automatic view-weight learning mechanism. Firstly, this algorithm introduces a view-weight factor that can automatically adjust the weight of different views, thereby allowing each view to obtain the best possible weight. Secondly, the algorithm incorporates a weighted fuzzy factor, which serves to obtain local spatial information and local grayscale information to preserve image details as much as possible. Finally, in order to weaken the effects of noise and outliers in image segmentation, this algorithm employs the kernel distance measure instead of the Euclidean distance.

Findings

The authors added different kinds of noise to images and conducted a large number of experimental tests. The results show that the proposed algorithm performs better and is more accurate than previous multi-view fuzzy clustering algorithms in solving the problem of noisy image segmentation.

Originality/value

Most of the existing multi-view clustering algorithms are for multi-view datasets, and the multi-view fuzzy clustering algorithms are unable to eliminate noise points and outliers when dealing with noisy images. The algorithm proposed in this paper has stronger noise immunity and can better preserve the details of the original image.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 September 2016

Runhai Jiao, Shaolong Liu, Wu Wen and Biying Lin

The large volume of big data makes it impractical for traditional clustering algorithms which are usually designed for entire data set. The purpose of this paper is to focus on…

Abstract

Purpose

The large volume of big data makes it impractical for traditional clustering algorithms which are usually designed for entire data set. The purpose of this paper is to focus on incremental clustering which divides data into series of data chunks and only a small amount of data need to be clustered at each time. Few researches on incremental clustering algorithm address the problem of optimizing cluster center initialization for each data chunk and selecting multiple passing points for each cluster.

Design/methodology/approach

Through optimizing initial cluster centers, quality of clustering results is improved for each data chunk and then quality of final clustering results is enhanced. Moreover, through selecting multiple passing points, more accurate information is passed down to improve the final clustering results. The method has been proposed to solve those two problems and is applied in the proposed algorithm based on streaming kernel fuzzy c-means (stKFCM) algorithm.

Findings

Experimental results show that the proposed algorithm demonstrates more accuracy and better performance than streaming kernel stKFCM algorithm.

Originality/value

This paper addresses the problem of improving the performance of increment clustering through optimizing cluster center initialization and selecting multiple passing points. The paper analyzed the performance of the proposed scheme and proved its effectiveness.

Details

Kybernetes, vol. 45 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 14 December 2021

Deepak S. Uplaonkar, Virupakshappa and Nagabhushan Patil

The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.

Abstract

Purpose

The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.

Design/methodology/approach

After collecting the ultrasound images, contrast-limited adaptive histogram equalization approach (CLAHE) is applied as preprocessing, in order to enhance the visual quality of the images that helps in better segmentation. Then, adaptively regularized kernel-based fuzzy C means (ARKFCM) is used to segment tumor from the enhanced image along with local ternary pattern combined with selective level set approaches.

Findings

The proposed segmentation algorithm precisely segments the tumor portions from the enhanced images with lower computation cost. The proposed segmentation algorithm is compared with the existing algorithms and ground truth values in terms of Jaccard coefficient, dice coefficient, precision, Matthews correlation coefficient, f-score and accuracy. The experimental analysis shows that the proposed algorithm achieved 99.18% of accuracy and 92.17% of f-score value, which is better than the existing algorithms.

Practical implications

From the experimental analysis, the proposed ARKFCM with enhanced level set algorithm obtained better performance in ultrasound liver tumor segmentation related to graph-based algorithm. However, the proposed algorithm showed 3.11% improvement in dice coefficient compared to graph-based algorithm.

Originality/value

The image preprocessing is carried out using CLAHE algorithm. The preprocessed image is segmented by employing selective level set model and Local Ternary Pattern in ARKFCM algorithm. In this research, the proposed algorithm has advantages such as independence of clustering parameters, robustness in preserving the image details and optimal in finding the threshold value that effectively reduces the computational cost.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 23 March 2021

Hendri Murfi

The aim of this research is to develop an eigenspace-based fuzzy c-means method for scalable topic detection.

Abstract

Purpose

The aim of this research is to develop an eigenspace-based fuzzy c-means method for scalable topic detection.

Design/methodology/approach

The eigenspace-based fuzzy c-means (EFCM) combines representation learning and clustering. The textual data are transformed into a lower-dimensional eigenspace using truncated singular value decomposition. Fuzzy c-means is performed on the eigenspace to identify the centroids of each cluster. The topics are provided by transforming back the centroids into the nonnegative subspace of the original space. In this paper, we extend the EFCM method for scalability by using the two approaches, i.e. single-pass and online. We call the developed topic detection methods as oEFCM and spEFCM.

Findings

Our simulation shows that both oEFCM and spEFCM methods provide faster running times than EFCM for data sets that do not fit in memory. However, there is a decrease in the average coherence score. For both data sets that fit and do not fit into memory, the oEFCM method provides a tradeoff between running time and coherence score, which is better than spEFCM.

Originality/value

This research produces a scalable topic detection method. Besides this scalability capability, the developed method also provides a faster running time for the data set that fits in memory.

Details

Data Technologies and Applications, vol. 55 no. 4
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 4 July 2016

M. Punniyamoorthy and P. Sridevi

Credit risk assessment has gained importance in recent years due to global financial crisis and credit crunch. Financial institutions therefore seek the support of credit rating…

1081

Abstract

Purpose

Credit risk assessment has gained importance in recent years due to global financial crisis and credit crunch. Financial institutions therefore seek the support of credit rating agencies to predict the ability of creditors to meet financial persuasions. The purpose of this paper is to construct neural network (NN) and fuzzy support vector machine (FSVM) classifiers to discriminate good creditors from bad ones and identify a best classifier for credit risk assessment.

Design/methodology/approach

This study uses artificial neural network, the most popular AI technique used in the field of financial applications for classification and prediction and the new machine learning classification algorithm, FSVM to differentiate good creditors from bad. As membership value on data points influence the classification problem, this paper presents the new FSVM model. The instances membership is computed using fuzzy c-means by evolving a new membership. The FSVM model is also tested on different kernels and compared and the classifier with highest classification accuracy for a kernel is identified.

Findings

The paper identifies a standard AI model by comparing the performances of the NN model and FSVM model for a credit risk data set. This work proves that that FSVM model performs better than back propagation-neural network.

Practical implications

The proposed model can be used by financial institutions to accurately assess the credit risk pattern of customers and make better decisions.

Originality/value

This paper has developed a new membership for data points and has proposed a new FCM-based FSVM model for more accurate predictions.

Article
Publication date: 28 January 2014

Swarnalatha Purushotham and Balakrishna Tripathy

The purpose of this paper is to provide a way to analyze satellite images using various clustering algorithms and refined bitplane methods with other supporting techniques to…

Abstract

Purpose

The purpose of this paper is to provide a way to analyze satellite images using various clustering algorithms and refined bitplane methods with other supporting techniques to prove the superiority of RIFCM.

Design/methodology/approach

A comparative study has been carried out using RIFCM with other related algorithms from their suitability in analysis of satellite images with other supporting techniques which segments the images for further process for the benefit of societal problems. Four images were selected dealing with hills, freshwater, freshwatervally and drought satellite images.

Findings

The superiority of the proposed algorithm, RIFCM with refined bitplane towards other clustering techniques with other supporting methods clustering, has been found and as such the comparison, has been made by applying four metrics (Otsu (Max-Min), PSNR and RMSE (40%-60%-Min-Max), histogram analysis (Max-Max), DB index and D index (Max-Min)) and proved that the RIFCM algorithm with refined bitplane yielded robust results with efficient performance, reduction in the metrics and time complexity of depth computation of satellite images for further process of an image.

Practical implications

For better clustering of satellite images like lands, hills, freshwater, freshwatervalley, drought, etc. of satellite images is an achievement.

Originality/value

The existing system extends the novel framework to provide a more explicit way to analyze an image by removing distortions with refined bitplane slicing using the proposed algorithm of rough intuitionistic fuzzy c-means to show the superiority of RIFCM.

Article
Publication date: 7 February 2021

Sengathir Janakiraman, Deva Priya M., Christy Jeba Malar A., Karthick S. and Anitha Rajakumari P.

The purpose of this paper is to design an Internet-of-Things (IoT) architecture-based Diabetic Retinopathy Detection Scheme (DRDS) proposed for identifying Type-I or Type-II…

Abstract

Purpose

The purpose of this paper is to design an Internet-of-Things (IoT) architecture-based Diabetic Retinopathy Detection Scheme (DRDS) proposed for identifying Type-I or Type-II diabetes and to specifically advise the Type-II diabetic patients about the possibility of vision loss.

Design/methodology/approach

The proposed DRDS includes the benefits of automatic calculation of clip limit parameters and sub-window for making the detection process completely adaptive. It uses the advantages of extended 5 × 5 Sobels operator for estimating the maximum edges determined through the convolution of 24 pixels with eight templates to achieve 24 outputs corresponding to individual pixels for finding the maximum magnitude. It enhances the probability of connecting pixels in the vascular map with its closely located neighbourhood points in the fundus images. Then, the spatial information and kernel of the neighbourhood pixels are integrated through the Robust Semi-supervised Kernelized Fuzzy Local information C-Means Clustering (RSKFL-CMC) method to attain significant clustering process.

Findings

The results of the proposed DRDS architecture confirm the predominance in terms of accuracy, specificity and sensitivity. The proposed DRDS technique facilitates superior performance at an average of 99.64% accuracy, 76.84% sensitivity and 99.93% specificity.

Research limitations/implications

DRDS is proposed as a comfortable, pain-free and harmless diagnosis system using the merits of Dexcom G4 Plantinum sensors for estimating blood glucose level in diabetic patients. It uses the merits of RSKFL-CMC method to estimate the spatial information and kernel of the neighborhood pixels for attaining significant clustering process.

Practical implications

The IoT architecture comprises of the application layer that inherits the DR application enabled Graphical User Interface (GUI) which is combined for processing of fundus images by using MATLAB applications. This layer aids the patients in storing the capture fundus images in the database for future diagnosis.

Social implications

This proposed DRDS method plays a vital role in the detection of DR and categorization based on the intensity of disease into severe, moderate and mild grades. The proposed DRDS is responsible for preventing vision loss of diabetic Type-II patients by accurate and potential detection achieved through the utilization of IoT architecture.

Originality/value

The performance of the proposed scheme with the benchmarked approaches of the literature is implemented using MATLAB R2010a. The complete evaluations of the proposed scheme are conducted using HRF, REVIEW, STARE and DRIVE data sets with subjective quantification provided by the experts for the purpose of potential retinal blood vessel segmentation.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 9 March 2020

Zahra Nematzadeh, Roliana Ibrahim, Ali Selamat and Vahdat Nazerian

The purpose of this study is to enhance data quality and overall accuracy and improve certainty by reducing the negative impacts of the FCM algorithm while clustering real-world…

Abstract

Purpose

The purpose of this study is to enhance data quality and overall accuracy and improve certainty by reducing the negative impacts of the FCM algorithm while clustering real-world data and also decreasing the inherent noise in data sets.

Design/methodology/approach

The present study proposed a new effective model based on fuzzy C-means (FCM), ensemble filtering (ENS) and machine learning algorithms, called an FCM-ENS model. This model is mainly composed of three parts: noise detection, noise filtering and noise classification.

Findings

The performance of the proposed model was tested by conducting experiments on six data sets from the UCI repository. As shown by the obtained results, the proposed noise detection model very effectively detected the class noise and enhanced performance in case the identified class noisy instances were removed.

Originality/value

To the best of the authors’ knowledge, no effort has been made to improve the FCM algorithm in relation to class noise detection issues. Thus, the novelty of existing research is combining the FCM algorithm as a noise detection technique with ENS to reduce the negative effect of inherent noise and increase data quality and accuracy.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

1 – 10 of 72