Search results

1 – 10 of 19
Article
Publication date: 31 August 2023

Chongyang Chen, Kem Z.K. Zhang, Zhaofang Chu and Matthew Lee

In the growing information systems (IS) literature on metaverse, augmented reality (AR) technology is regarded as a cornerstone of the metaverse which enables interaction…

1307

Abstract

Purpose

In the growing information systems (IS) literature on metaverse, augmented reality (AR) technology is regarded as a cornerstone of the metaverse which enables interaction services. Interaction has been identified as a core technology characteristic of metaverse shopping environments. Based on previous human–technology interaction research, the authors further explicate interaction to be multimodal sensory. The purpose of this study is thus to better understand the unique nature of interaction in AR technology and highlight the technology's benefits for shopping in metaverse spaces.

Design/methodology/approach

An experiment has been conducted to empirically examine the authors' research model. The authors use the structural equation modeling (SEM) approach to analyze the collected data.

Findings

This study conceptualizes image, motion and touchscreen interactions as the three dimensions of multimodal sensory interaction, which can reflect visual-, kinesthetic- and haptic-based sensation stimulation. The authors' findings show that multimodal sensory interaction of AR activates consumers' intention to purchase via a psychological process. To delineate this psychological process, the authors use feelings-as-information theory to posit that experiential factors can influence cognitive factors. More specifically, multimodal sensory interaction is shown to increase multisensory experience and spatial presence, which can effectively reduce product uncertainty and information overload. The two outcomes have been considered to be key issues in online shopping environments.

Originality/value

This study is one of the first ones that shed light on the multimodal sensory peculiarity of AR interactions in the extant IS literature. The authors further highlight the benefits of AR in addressing major online shopping concerns about product uncertainty and information overload, which are largely overlooked by prior research. This study uses feelings-as-information theory to explain the impacts of AR interactions, which reveal the essential role of the experiential process in sensory-enabling technologies. This study enriches the existing theoretical frameworks that mostly focus on the cognitive process. The authors' findings about AR interactions provide noteworthy guidelines for the design of metaverse environments and extend the authors' understanding of how the metaverse may bring benefits beyond traditional online shopping settings.

Details

Internet Research, vol. 34 no. 1
Type: Research Article
ISSN: 1066-2243

Keywords

Abstract

Details

Internet Research, vol. 34 no. 1
Type: Research Article
ISSN: 1066-2243

Article
Publication date: 25 July 2023

Xu Wang, Xin Feng and Jingyi Zhao

The online Question and Answer community is full of a large number of science and technology topics, the discussion and dissemination of which play an important role in promoting…

Abstract

Purpose

The online Question and Answer community is full of a large number of science and technology topics, the discussion and dissemination of which play an important role in promoting the popularization of new technologies and cultivating public enthusiasm for science. However, the spread of false information and rumors weakens the community's positive effect, making the community more difficult for people to obtain useful information on such topics. Research on the influencing factors and governance of the spread of false information on science and technology topics has become the key to the spread of popular science.

Design/methodology/approach

Therefore, this paper uses the Elaboration Likelihood Model as the theoretical framework to examine the role of the factors influencing the spread of false information on science and technology topics in Zhihu community on the information persuasion and the impact on public behavior attitude from the core path and the edge path. This paper compiles a crawler program to capture 12,893 response information under the “Metaverse” topic in Zhihu community as an empirical sample and uses text mining and conducts visual correlation analysis to explore the key factors affecting the persuasive transmission path of information on science and technology topics.

Findings

The research finds that the content specialization, content consistency and content coherence of science and technology topics affect personal judgment from the aspect of information content through the core path and have a positive correlation with information persuasion; the number of comments, the length of the text and the publishing authors' influence from the edge image characteristics through the edge path are positively correlated with the information persuasion. Then, from the perspective of topic platform, government and topic participants, this paper puts forward a general plan to improve the information persuasion of science and technology topics so as to deal with false information.

Originality/value

Compared with the small data set of the traditional questionnaire survey, the research based on community empirical big data is more reliable. The model takes into account the attitude and behavior of users and is more suitable for the research on the transmission path of scientific and technological information in the internet era. This research provides a direction for analyzing the text characteristics and development trends of information in the field of science and technology and is conducive to promoting the optimization of the network information environment and building a good ecology, with the spread of rumors about science and technology topics curbed and the governance of false information strengthened.

Article
Publication date: 18 November 2022

Jing Yin, Jiahao Li, Ahui Yang and Shunyao Cai

In regarding to operational efficiency and safety improvements, multiple tower crane service scheduling problem is one of the main problems related to tower crane operation but…

Abstract

Purpose

In regarding to operational efficiency and safety improvements, multiple tower crane service scheduling problem is one of the main problems related to tower crane operation but receives limited attention. The current work presents an optimization model for scheduling multiple tower cranes' service with overlapping areas while achieving collision-free between cranes.

Design/methodology/approach

The cooperative coevolutionary genetic algorithm (CCGA) was proposed to solve this model. Considering the possible types of cross-tasks, through effectively allocating overlapping area tasks to each crane and then prioritizing the assigned tasks for each crane, the makespan of tower cranes was minimized and the crane collision avoidance was achieved by only allowing one crane entering the overlapping area at one time. A case study of the mega project Daxing International Airport has been investigated to evaluate the performance of the proposed algorithm.

Findings

The computational results showed that the CCGA algorithm outperforms two compared algorithms in terms of the optimal makespan and the CPU time. Also, the convergence of CCGA was discussed and compared, which was better than that of traditional genetic algorithm (TGA) for small-sized set (50 tasks) and was almost the same as TGA for large-sized sets.

Originality/value

This paper can provide new perspectives on multiple tower crane service sequencing problem. The proposed model and algorithm can be applied directly to enhance the operational efficiency of tower cranes on construction site.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 August 2023

Usman Tariq, Ranjit Joy, Sung-Heng Wu, Muhammad Arif Mahmood, Asad Waqar Malik and Frank Liou

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive…

Abstract

Purpose

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive manufacturing (SM) processes. The current shortcomings and outlook of the DF also have been highlighted. A DF is a state-of-the-art manufacturing facility that uses innovative technologies, including automation, artificial intelligence (AI), the Internet of Things, additive manufacturing (AM), SM, hybrid manufacturing (HM), sensors for real-time feedback and control, and a DT, to streamline and improve manufacturing operations.

Design/methodology/approach

This study presents a novel perspective on DF development using laser-based AM, SM, sensors and DTs. Recent developments in laser-based AM, SM, sensors and DTs have been compiled. This study has been developed using systematic reviews and meta-analyses (PRISMA) guidelines, discussing literature on the DTs for laser-based AM, particularly laser powder bed fusion and direct energy deposition, in-situ monitoring and control equipment, SM and HM. The principal goal of this study is to highlight the aspects of DF and its development using existing techniques.

Findings

A comprehensive literature review finds a substantial lack of complete techniques that incorporate cyber-physical systems, advanced data analytics, AI, standardized interoperability, human–machine cooperation and scalable adaptability. The suggested DF effectively fills this void by integrating cyber-physical system components, including DT, AM, SM and sensors into the manufacturing process. Using sophisticated data analytics and AI algorithms, the DF facilitates real-time data analysis, predictive maintenance, quality control and optimal resource allocation. In addition, the suggested DF ensures interoperability between diverse devices and systems by emphasizing standardized communication protocols and interfaces. The modular and adaptable architecture of the DF enables scalability and adaptation, allowing for rapid reaction to market conditions.

Originality/value

Based on the need of DF, this review presents a comprehensive approach to DF development using DTs, sensing devices, LAM and SM processes and provides current progress in this domain.

Article
Publication date: 9 June 2023

Nian Zhang, Shuo Zheng, Lingyuan Tian and Guiwu Wei

In the supply chain disruption risk, the issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Abstract

Purpose

In the supply chain disruption risk, the issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Design/methodology/approach

Considering the influence of irrational emotions of decision makers, an evaluation model is designed by the regret theory and VIKOR method, which makes the decision-making process closer to reality.

Findings

The paper has some innovations in the evaluation index system and evaluation model construction. The method has good stability under the risk of supply chain interruption.

Originality/value

The mixed evaluation information is used to describe the attributes, and the evaluation index system is constructed by the combined method of the social network analysis method and the literature research method to ensure the accuracy and accuracy of the extracted attributes. The issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 14 October 2022

Yiwen Li, Zhihai Dong, Junyan Miao, Huifang Liu, Aleksandr Babkin and Yunlong Chang

This paper aims to anticipate the possible development direction of WAAM. For large-scale and complex components, the material loss and cycle time of wire arc additive…

Abstract

Purpose

This paper aims to anticipate the possible development direction of WAAM. For large-scale and complex components, the material loss and cycle time of wire arc additive manufacturing (WAAM) are lower than those of conventional manufacturing. However, the high-precision WAAM currently requires longer cycle times for correcting dimensional errors. Therefore, new technologies need to be developed to achieve high-precision and high-efficiency WAAM.

Design/methodology/approach

This paper analyses the innovations in high-precision WAAM in the past five years from a mechanistic point of view.

Findings

Controlling heat to improve precision is an effective method. Methods of heat control include reducing the amount of heat entering the deposited interlayer or transferring the accumulated heat out of the interlayer in time. Based on this, an effective and highly precise WAAM is achievable in combination with multi-scale sensors and a complete expert system.

Originality/value

Therefore, a development direction for intelligent WAAM is proposed. Using the optimised process parameters based on machine learning, adjusting the parameters according to the sensors’ in-process feedback, achieving heat control and high precision manufacturing.

Article
Publication date: 1 January 2024

Shrutika Sharma, Vishal Gupta, Deepa Mudgal and Vishal Srivastava

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to…

Abstract

Purpose

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates.

Design/methodology/approach

The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination (R2) and mean absolute error (MAE).

Findings

Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments.

Research limitations/implications

The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study.

Originality/value

This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

18

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 December 2023

Umair Khan, William Pao, Karl Ezra Salgado Pilario, Nabihah Sallih and Muhammad Rehan Khan

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime…

70

Abstract

Purpose

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime identification.

Design/methodology/approach

A numerical two-phase flow model was validated against experimental data and was used to generate dynamic pressure signals for three different flow regimes. First, four distinct methods were used for feature extraction: discrete wavelet transform (DWT), empirical mode decomposition, power spectral density and the time series analysis method. Kernel Fisher discriminant analysis (KFDA) was used to simultaneously perform dimensionality reduction and machine learning (ML) classification for each set of features. Finally, the Shapley additive explanations (SHAP) method was applied to make the workflow explainable.

Findings

The results highlighted that the DWT + KFDA method exhibited the highest testing and training accuracy at 95.2% and 88.8%, respectively. Results also include a virtual flow regime map to facilitate the visualization of features in two dimension. Finally, SHAP analysis showed that minimum and maximum values extracted at the fourth and second signal decomposition levels of DWT are the best flow-distinguishing features.

Practical implications

This workflow can be applied to opaque pipes fitted with pressure sensors to achieve flow assurance and automatic monitoring of two-phase flow occurring in many process industries.

Originality/value

This paper presents a novel flow regime identification method by fusing dynamic pressure measurements with ML techniques. The authors’ novel DWT + KFDA method demonstrates superior performance for flow regime identification with explainability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 19