Search results

11 – 20 of 209
Article
Publication date: 4 December 2018

Seyyed Mostafa Hoseinalipour, Hamidreza Shahbazian and Bengt Ake Sunden

The study aims to focus on rotation effects on a ribbed channel of gas turbine blades for internal cooling. The combination and interaction between secondary flows generated by…

Abstract

Purpose

The study aims to focus on rotation effects on a ribbed channel of gas turbine blades for internal cooling. The combination and interaction between secondary flows generated by angled rib geometry and Coriolis forces in the rotating channel are studied numerically.

Design/methodology/approach

A radially outward flow passage as an internal cooling test model with and without ribs is used to perform the investigation. Aspect ratio of the passage is 1:1. Square ribs with e/Dh = 0.1, p/e = 10 and four various rib angles of 90°, 75°, 60° and 45° are configured on both the leading and trailing surfaces along the rotating duct. The study covers a Reynolds number of 10,000 and Rotation number in the range of 0-0.15.

Findings

Nusselt numbers in the ribbed duct are 2.5 to 3.5 times those of a smooth square duct, depending on the Rotation number and rib angle. The maximum value is attained for the 45° ribbed surface. The synergy angle between the velocity and temperature gradients is improved by the angled rib secondary flows and Coriolis vortex. The decrease of the synergy angle is 8.9, 13.4, 12.1 and 10.1 per cent for the 90°, 75°, 60° and 45° ribbed channels with rotation, respectively. Secondary flow intensity is increased by rotation in the 90° and 75° ribbed ducts and is decreased in 45° and 60° ribbed cases for which the rib-induced secondary flow dominates.

Originality/value

The primary motivation behind this work is to investigate the possibility of heat transfer enhancement by vortex flow with developing turbulence in the view point of the field synergy principle and secondary flow intensity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 December 2021

Hakan Coşanay, Hakan F. Öztop, Muhammed Gür and Eda Bakır

The purpose of this study is to make a numerical analysis of a wall jet with a moving wall attached with a heated body. The hot body is cooled via impinging wall jet. Thus, a jet…

Abstract

Purpose

The purpose of this study is to make a numerical analysis of a wall jet with a moving wall attached with a heated body. The hot body is cooled via impinging wall jet. Thus, a jet cooling problem is modeled. The Reynolds number is taken in three different values between 5 × 103 ≤ Re ≤ 15 × 103. The h/H ratio for each value of the Re number was taken as 0.02, 0.04 and 0.0, respectively.

Design/methodology/approach

Two-dimensional impinged wall jet problem onto a moving body on a conveyor is numerically studied. The heated body is inserted onto an adiabatic moving wall, and it moves in +x direction with the wall. Governing equations for turbulent flow are solved by using the finite element method via analysis and system Fluent R2020. A dynamic mesh was produced to simulate the moving hot body.

Findings

The obtained results showed that the heat transfer (HT) is decreased with distance between the jet outlet and the jet inlet. The best HT occurred for the parameters of h/H = 0.02 and Re = 15 × 103. Also, HT can be controlled by changing the h/H ratio as a passive method.

Originality/value

Originality of this work is to make an analysis of turbulent flow and heat transfer for wall jet impinging onto a moving heated body.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2019

Zhiguo Tang, Hai Li, Feng Zhang, Xiaoteng Min and Jianping Cheng

The purpose of this paper is to explore the flow and heat transfer characteristics of the jet impingement onto a conical heat sink and evaluate the ability of heat transfer…

Abstract

Purpose

The purpose of this paper is to explore the flow and heat transfer characteristics of the jet impingement onto a conical heat sink and evaluate the ability of heat transfer enhancement.

Design/methodology/approach

A numerical study of the flow and heat transfer of liquid impingement on cone heat sinks was conducted, and transition SST turbulence model was validated and adopted. The flow and thermal performances were investigated with the Reynolds number that ranges from 5,000 to 23,000 and cone angle that ranges from 0° to 70° in four regions.

Findings

Local Nusselt numbers are large, and pressure coefficients drop rapidly near the stagnation point. In the conical bottom edge, a secondary inclined jet was observed, thereby introducing a horseshoe vortex that causes drastic fluctuations in the curves of the flow and heat transfer. The average Nusselt numbers are higher in a conical protuberance than in flat plates in most cases, thus indicating that the heat transfer performance of jet impingement can be improved by a cone heat sink. The maximum increase is 13.6 per cent when the cone angle is 60°, and the Reynolds number is 23,000.

Originality/value

The flow and heat transfer behavior at the bottom edge of the cone heat sink is supplemented. The average heat transfer capacity of different heat transfer radii was evaluated, which provided a basis for the study of cone arrays.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2020

Seyed Mohsen Hosseinian, Ali Mostafazade Abolmaali and Hossein Afshin

Spiral-wound heat exchangers (SWHEs) are widely used in different industries. In special applications, such as cryogenic (HEs), fluid properties may significantly depend on fluid…

Abstract

Purpose

Spiral-wound heat exchangers (SWHEs) are widely used in different industries. In special applications, such as cryogenic (HEs), fluid properties may significantly depend on fluid temperature. This paper aims to present an analytical method for design and rating of SWHEs considering variable fluid properties with consistent shell geometry and single-phase fluid.

Design/methodology/approach

To consider variations of fluid properties, the HE is divided into identical segments, and the fluid properties are assumed to be constant in each segment. Validation of the analytical method is accomplished by using three-dimensional numerical simulation with shear stress transport k-ω model, and the numerical model is verified by using the experimental data. Moreover, the HE cost is selected as the main criterion in obtaining the proper design, and the most affordable geometry is selected as the proper design.

Findings

The accuracy of different heat transfer and pressure drop correlations is investigated by comparing the analytical and numerical results. The average errors in the calculation of effectiveness, shell-side pressure drop and tube-side pressure drop using the analytical method are 2.1%, 13.9% and 13.3%, respectively. Moreover, the effect of five main geometrical parameters on the SWHE cost is investigated. The results indicate that the effect of longitudinal pitch ratio on the SWHE cost can be neglected, whereas other geometrical parameters have a significant impact on the total cost of the SWHE.

Originality/value

This work contains a versatile and low-cost analytical method to design and rating the SWHEs considering the variable fluid property with consistent shell geometry. The previous studies have introduced complex methods and have not considered the consistency of shell geometry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 March 2024

Hakan F. Oztop, Burak Kiyak and Ishak Gökhan Aksoy

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store…

Abstract

Purpose

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store energy. This approach is intended to offer novel insights into enhancing thermal energy storage systems, particularly for applications where heat transfer efficiency and energy storage are critical.

Design/methodology/approach

The research involved an experimental and numerical analysis of PCM with a melting temperature range of 22 °C–26°C under various conditions. Three different jet angles (45°, 90° and 135°) and two container angles (45° and 90°) were tested. Additionally, two different Reynolds numbers (2,235 and 4,470) were used to explore the effects of jet outlet velocities on PCM melting behaviour. The study used a circular container and analysed the melting process using the hot air inclined jet impingement (HAIJI) method.

Findings

The obtained results showed that the average temperature for the last time step at Ф = 90° and Re = 4,470 is 6.26% higher for Ф = 135° and 14.23% higher for Ф = 90° compared with the 45° jet angle. It is also observed that the jet angle, especially for Ф = 90°, is a much more important factor in energy storage than the Reynolds number. In other words, the jet angle can be used as a passive control parameter for energy storage.

Originality/value

This study offers a novel perspective on the effective storage of waste heat transferred with air, such as exhaust gases. It provides valuable insights into the role of jet inclination angles and Reynolds numbers in optimizing the melting and energy storage performance of PCMs, which can be crucial for enhancing the efficiency of thermal energy storage systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 January 2012

Sung In Kim, Hamidur Rahman and Ibrahim Hassan

One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the…

Abstract

Purpose

One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. The purpose of this paper is to study numerically the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer.

Design/methodology/approach

In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature, as well as non‐uniform inlet temperature have been considered.

Findings

The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on‐design operating conditions, the turbine power output can be increased by 1.33 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations. The non‐uniform turbine inlet temperature enhances the heat flux fluctuation on the blade tip and casing.

Originality/value

The increase of turbine inlet temperature is usually proposed to achieve the higher turbine efficiency and the higher turbine power output. However, it has not been reported how much the heat transfer into the blade tip and casing increases with the increased turbine inlet temperature. This paper investigates the heat transfer distributions on the rotor blade tip and casing, associated with the tip leakage flow under high and low turbine inlet temperatures, as well as non‐uniform temperature distribution.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 June 2019

Gus Nasif, R.M. Barron, Ram Balachandar and Julio Villafuerte

Application of cold spray technology may exhibit significant benefits for the additive manufacturing process, particularly for producing intricate objects. To ascertain the…

226

Abstract

Purpose

Application of cold spray technology may exhibit significant benefits for the additive manufacturing process, particularly for producing intricate objects. To ascertain the feasibility of such an application, this paper aims to present a numerical investigation of the effect of scaling down a convergent-divergent (de Laval) nozzle, which is typically used in the cold spray industry, on the compressible flow parameters and thermal characteristics.

Design/methodology/approach

The Navier–Stokes equations and energy equation governing compressible flow are numerically solved using a finite volume method with a coupled solver. The conjugate heat transfer technique is used to couple fluid and solid heat transfer domains and predict the local heat transfer coefficient between the solid and fluid. The use of various RANS turbulence models has also been investigated to quantify the effect of the turbulence model on the simulation.

Findings

The numerical results reveal that the flow and thermal characteristics are altered as the convergent-divergent nozzle is scaled down. The static pressure and temperature profiles at any section in the nozzle are shifted toward higher values, while the Mach number profile at any section in the nozzle is shifted toward a lower Mach number. The turbulent kinetic energy at the nozzle exit increases with the scaling down of the nozzle geometry. This study also provides convincing evidence that the adiabatic approach is still suitable even though the temperature of the nozzle wall is extremely high, as required for industrial application. Results indicate that it is feasible to use the available capabilities of the cold spray technology for additive manufacturing after scaling down the nozzle.

Originality/value

The idea of adopting cold spray technology for additive manufacturing is new and innovative. To develop this idea into a viable commercial product, a thorough understanding of the flow physics within a cold spray nozzle is required. The simulation results discussed in this paper demonstrate the effect that scaling down of a convergent-divergent nozzle has on the flow characteristics in the nozzle.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2017

Mojtaba Tahani, Mehran Masdari and Ali Bargestan

This paper aims to investigate the aerodynamic characteristics as well as static stability of wing-in-ground effect aircraft. The effect of geometrical characteristics, namely…

Abstract

Purpose

This paper aims to investigate the aerodynamic characteristics as well as static stability of wing-in-ground effect aircraft. The effect of geometrical characteristics, namely, twist angle, dihedral angle, sweep angle and taper ratio are examined.

Design/methodology/approach

A three-dimensional computational fluid dynamic code is developed to investigate the aerodynamic characteristics of the effect. The turbulent model is utilized for characterization of flow over wing surface.

Findings

The numerical results show that the maximum change of the drag coefficient depends on the angle of attack, twist angle and ground clearance, in a decreasing order. Also, it is found that the lift coefficient increases as the ground clearance, twist angle and dihedral angle decrease. On the other hand, the sweep angle does not have a significant effect on the lift coefficient for the considered wing section and Reynolds number. Also, as the aerodynamic characteristics increase, the taper ratio befits in trailing state.

Practical implications

To design an aircraft, the effect of each design parameter needs to be estimated. For this purpose, the sensitivity analysis is used. In this paper, the influence of all parameter against each other including ground clearance, angle of attack, twist angle, dihedral angle and sweep angle for the NACA 6409 are investigated.

Originality/value

As a summary, the contribution of this paper is to predict the aerodynamic performance for the cruise condition. In this study, the sensitivity of the design parameter on aerodynamic performance can be estimated and the effect of geometrical characteristics has been investigated in detail. Also, the best lift to drag coefficient for the NACA 6409 wing section specifies and two types of taper ratios in ground effect are compared.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 May 2016

Andrzej J Nowak, Michal Palacz, Jacek Smolka, Krzysztof Banasiak, Zbigniew Bulinski, Adam Fic and Armin Hafner

The purpose of this paper is to overview successful approaches to the computational simulation of real fluid (R744 – carbon dioxide (CO2)) flow within an ejector is presented…

Abstract

Purpose

The purpose of this paper is to overview successful approaches to the computational simulation of real fluid (R744 – carbon dioxide (CO2)) flow within an ejector is presented. Important issues such as the ejector geometry and its optimisation, the adapted equations of state and the proposed models of the process, fluid parameters, etc., are examined and critically discussed. Whenever possible, the discussed models are experimentally validated. In the conclusion, some trends in future research are pointed out.

Design/methodology/approach

Flow within CO2 ejector is generally transcritical and compressible. Models existing in the literature are shortly described and critically compared. Whenever possible, those models were validated against the experimental data. In a model validation process, the primary and secondary mass flow rates as well as the pressures at the selected points in the mixing section and diffuser were compared, showing a satisfactory agreement between experimental and computational results.

Findings

Developed CO2 ejector flow models are tested in few industrial applications. All these initiatives bring solutions which are interesting and very promising from technological point of view.

Originality/value

This is an extensive overview of successful approaches to computational simulation of the real fluid (R744 – CO2) flow within ejector. It brings many useful information.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2019

Zhen Chen, Zhengqi Gu and Zhonggang Wang

This paper aims to propose a precise turbulence model for vehicle aerodynamics, especially for vehicle window buffeting noise.

Abstract

Purpose

This paper aims to propose a precise turbulence model for vehicle aerodynamics, especially for vehicle window buffeting noise.

Design/methodology/approach

Aiming at the fact that commonly used turbulence models cannot precisely predict laminar-turbulent transition, a transition-code-based improvement is introduced. This improvement includes the introduction of total stress limitation (TSL) and separation-sensitive model. They are integrated into low Reynolds number (LRN) k-ε model to concern transport properties of total stress and precisely capture boundary layer separations. As a result, the ability of LRN k-ε model to predict the transition is improved. Combined with the constructing scheme of constrained large-eddy simulation (CLES) model, a modified LRN CLES model is achieved. Several typical flows and relevant experimental results are introduced to validate this model. Finally, the modified LRN CLES model is used to acquire detailed flow structures and noise signature of a simplified vehicle window. Then, experimental validations are conducted.

Findings

Current results indicate that the modified LRN CLES model is capable of achieving acceptable accuracy in prediction of various types of transition at various Reynolds numbers. And, the ability of this model to simulate the vehicle window buffeting noise is greater than commonly used models.

Originality/value

Based on the TSL idea and separation-sensitive model, a modified LRN CLES model concerning the laminar-turbulent transition for the vehicle window buffeting noise is first proposed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

11 – 20 of 209