Search results

1 – 4 of 4
Open Access
Article
Publication date: 11 April 2021

Josephine Dufitinema

The purpose of this paper is to compare different models’ performance in modelling and forecasting the Finnish house price returns and volatility.

Abstract

Purpose

The purpose of this paper is to compare different models’ performance in modelling and forecasting the Finnish house price returns and volatility.

Design/methodology/approach

The competing models are the autoregressive moving average (ARMA) model and autoregressive fractional integrated moving average (ARFIMA) model for house price returns. For house price volatility, the exponential generalized autoregressive conditional heteroscedasticity (EGARCH) model is competing with the fractional integrated GARCH (FIGARCH) and component GARCH (CGARCH) models.

Findings

Results reveal that, for modelling Finnish house price returns, the data set under study drives the performance of ARMA or ARFIMA model. The EGARCH model stands as the leading model for Finnish house price volatility modelling. The long memory models (ARFIMA, CGARCH and FIGARCH) provide superior out-of-sample forecasts for house price returns and volatility; they outperform their short memory counterparts in most regions. Additionally, the models’ in-sample fit performances vary from region to region, while in some areas, the models manifest a geographical pattern in their out-of-sample forecasting performances.

Research limitations/implications

The research results have vital implications, namely, portfolio allocation, investment risk assessment and decision-making.

Originality/value

To the best of the author’s knowledge, for Finland, there has yet to be empirical forecasting of either house price returns or/and volatility. Therefore, this study aims to bridge that gap by comparing different models’ performance in modelling, as well as forecasting the house price returns and volatility of the studied market.

Details

International Journal of Housing Markets and Analysis, vol. 15 no. 1
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 25 February 2020

Josephine Dufitinema

The purpose of this paper is to examine whether the house prices in Finland share financial characteristics with assets such as stocks. The studied regions are 15 main…

Abstract

Purpose

The purpose of this paper is to examine whether the house prices in Finland share financial characteristics with assets such as stocks. The studied regions are 15 main regions in Finland over the period of 1988:Q1-2018:Q4. These regions are divided geographically into 45 cities and sub-areas according to their postcode numbers. The studied type of dwellings is apartments (block of flats) divided into one-room, two rooms and more than three rooms apartment types.

Design/methodology/approach

Both Ljung–Box and Lagrange multiplier tests are used to test for clustering effects (autoregressive conditional heteroscedasticity effects). For cities and sub-areas with significant clustering effects, the generalized autoregressive conditional heteroscedasticity (GARCH)-in-mean model is used to determine the potential impact that the conditional variance may have on returns. Moreover, the exponential GARCH model is used to examine the possibility of asymmetric effects of shocks on house price volatility. For each apartment type, individual models are estimated; enabling different house price dynamics, and variation of signs and magnitude of different effects across cities and sub-areas.

Findings

Results reveal that clustering effects exist in over half of the cities and sub-areas in all studied types of apartments. Moreover, mixed results on the sign of the significant risk-return relationship are observed across cities and sub-areas in all three apartment types. Furthermore, the evidence of the asymmetric impact of shocks on housing volatility is noted in almost all the cities and sub-areas housing markets. These studied volatility properties are further found to differ across cities and sub-areas, and by apartment types.

Research limitations/implications

The existence of these volatility patterns has essential implications, such as investment decision-making and portfolio management. The study outcomes will be used in a forecasting procedure of the volatility dynamics of the studied types of dwellings. The quality of the data limits the analysis and the results of the study.

Originality/value

To the best of the author’s knowledge, this is the first study that evaluates the volatility of the Finnish housing market in general, and by using data on both municipal and geographical level, particularly.

Details

International Journal of Housing Markets and Analysis, vol. 13 no. 4
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 23 January 2020

Josephine Dufitinema and Seppo Pynnönen

The purpose of this paper is to examine the evidence of long-range dependence behaviour in both house price returns and volatility for fifteen main regions in Finland over…

Abstract

Purpose

The purpose of this paper is to examine the evidence of long-range dependence behaviour in both house price returns and volatility for fifteen main regions in Finland over the period of 1988:Q1 to 2018:Q4. These regions are divided geographically into 45 cities and sub-areas according to their postcode numbers. The studied type of dwellings is apartments (block of flats) divided into one-room, two-rooms, and more than three rooms apartments types.

Design/methodology/approach

For each house price return series, both parametric and semiparametric long memory approaches are used to estimate the fractional differencing parameter d in an autoregressive fractional integrated moving average [ARFIMA (p, d, q)] process. Moreover, for cities and sub-areas with significant clustering effects (autoregressive conditional heteroscedasticity [ARCH] effects), the semiparametric long memory method is used to analyse the degree of persistence in the volatility by estimating the fractional differencing parameter d in both squared and absolute price returns.

Findings

A higher degree of predictability was found in all three apartments types price returns with the estimates of the long memory parameter constrained in the stationary and invertible interval, implying that the returns of the studied types of dwellings are long-term dependent. This high level of persistence in the house price indices differs from other assets, such as stocks and commodities. Furthermore, the evidence of long-range dependence was discovered in the house price volatility with more than half of the studied samples exhibiting long memory behaviour.

Research limitations/implications

Investigating the long memory behaviour in both returns and volatility of the house prices is crucial for investment, risk and portfolio management. One reason is that the evidence of long-range dependence in the housing market returns suggests a high degree of predictability of the asset. The other reason is that the presence of long memory in the housing market volatility aids in the development of appropriate time series volatility forecasting models in this market. The study outcomes will be used in modelling and forecasting the volatility dynamics of the studied types of dwellings. The quality of the data limits the analysis and the results of the study.

Originality/value

To the best of the authors’ knowledge, this is the first research that assesses the long memory behaviour in the Finnish housing market. Also, it is the first study that evaluates the volatility of the Finnish housing market using data on both municipal and geographical level.

Details

Journal of European Real Estate Research , vol. 13 no. 1
Type: Research Article
ISSN: 1753-9269

Keywords

Article
Publication date: 17 February 2021

Shizhen Wang and David Hartzell

This paper aims to examine real estate price volatility in Hong Kong. Monthly data on housing, offices, retail and factories in Hong Kong were analyzed from February 1993…

Abstract

Purpose

This paper aims to examine real estate price volatility in Hong Kong. Monthly data on housing, offices, retail and factories in Hong Kong were analyzed from February 1993 to February 2019 to test whether volatility clusters are present in the real estate market. Real estate price determinants were also investigated.

Design/methodology/approach

Autoregressive conditional heteroscedasticity–Lagrange multiplier test is used to examine the volatility clustering effects in these four kinds of real estate. An autoregressive and moving average model–generalized auto regressive conditional heteroskedasticity (GARCH) model was used to identify real estate price volatility determinants in Hong Kong.

Findings

There was volatility clustering in all four kinds of real estate. Determinants of price volatility vary among different types of real estate. In general, housing volatility in Hong Kong is influenced primarily by the foreign exchange rate (both RMB and USD), whereas commercial real estate is largely influenced by unemployment. The results of the exponential GARCH model show that there were no asymmetric effects in the Hong Kong real estate market.

Research limitations/implications

This volatility pattern has important implications for investors and policymakers. Residential and commercial real estate have different volatility determinants; investors may benefit from this when building a portfolio. The analysis and results are limited by the lack of data on real estate price determinants.

Originality/value

To the best of the authors’ knowledge, this paper is the first study that evaluates volatility in the Hong Kong real estate market using the GARCH class model. Also, this paper is the first to investigate commercial real estate price determinants.

Details

International Journal of Housing Markets and Analysis, vol. 15 no. 1
Type: Research Article
ISSN: 1753-8270

Keywords

1 – 4 of 4