Search results

1 – 3 of 3
Article
Publication date: 28 June 2022

Jizhuang Hui, Shuai Wang, Zhu Bin, Guangwei Xiong and Jingxiang Lv

The purpose of this paper deals with a capacitated multi-item dynamic lot-sizing problem with the simultaneous sequence-dependent setup scheduling of the parallel resource under…

Abstract

Purpose

The purpose of this paper deals with a capacitated multi-item dynamic lot-sizing problem with the simultaneous sequence-dependent setup scheduling of the parallel resource under complex uncertainty.

Design/methodology/approach

An improved chance-constrained method is developed, in which confidence level of uncertain parameters is used to process uncertainty, and based on this, the reliability of the constraints is measured. Then, this study proposes a robust reconstruction method to transform the chance-constrained model into a deterministic model that is easy to solve, in which the robust transformation methods are used to deal with constraints with uncertainty on the right/left. Then, experimental studies using a real-world production data set provided by a gearbox synchronizer factory of an automobile supplier is carried out.

Findings

This study has demonstrated the merits of the proposed approach where the inventory of products tends to increase with the increase of confidence level. Due to a larger confidence level may result in a more strict constraint, which means that the decision-maker becomes more conservative, and thus tends to satisfy more external demands at the cost of an increase of production and stocks.

Research limitations/implications

Joint decisions of production lot-sizing and scheduling widely applied in industries can effectively avert the infeasibility of lot-size decisions, caused by capacity of lot-sing alone decision and complex uncertainty such as product demand and production cost. is also challenging.

Originality/value

This study provides more choices for the decision-makers and can also help production planners find bottleneck resources in the production system, thus developing a more feasible and reasonable production plan in a complex uncertain environment.

Details

Assembly Automation, vol. 42 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 10 February 2020

Dongping Zhao, Gangfeng Wang, Jizhuang Hui, Wei Hou and Richard David Evans

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and…

Abstract

Purpose

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and quality of assembly. However, there is still a need for a systematic approach to be developed for APA of kinematic mechanisms. To achieve more accurate analysis of kinematic assembly, this paper aims to propose a precision analysis method based on equivalence of the deviation source.

Design/methodology/approach

A unified deviation vector representation model is adopted by considering dimension deviation, geometric deviation, joint clearance and assembly deformation. Then, vector loops and vector equations are constructed, according to joint type and deviation propagation path. A combined method, using deviation accumulation and sensitivity modeling, is applied to solve the kinematic APA of complex products.

Findings

When using the presented method, geometric form deviation, joint clearance and assembly deformation are considered selectively during tolerance modeling. In particular, the proposed virtual link model and its orientation angle are developed to determine joint deviation. Finally, vector loops and vector equations are modeled to express deviation accumulation.

Originality/value

The proposed method provides a new means for the APA of complex products, considering joint clearance and assembly deformation while improving the accuracy of APA, as much as possible.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 26 July 2021

Jizhuang Hui, Zhiqiang Yan, Jingxiang Lv, Yongsheng Liu, Kai Ding and Felix T.S. Chan

This paper aims to investigate the influences of process parameters on part quality, electrical energy consumption. Moreover, the relationship between part quality and energy…

Abstract

Purpose

This paper aims to investigate the influences of process parameters on part quality, electrical energy consumption. Moreover, the relationship between part quality and energy consumption of UTR9000 photosensitive resin fabricated by stereolithography apparatus (SLA) was also assessed.

Design/methodology/approach

Main effect plots and contour maps were used to analyze the interactions and effects of various parameters on energy consumption and part quality, respectively. Then, a growth rate was used defined as the percentage of the value of energy consumption (or the part quality) of the sample compared to the minimum value of the energy consumption (or the same part quality), to jointly analyze relationships between part quality and energy consumption on a specific process parameter.

Findings

The part qualities can be improved with increased energy consumption via adjusting layer thickness, without further increasing energy consumption through adjusting laser power, over-cure and scanning distance. Energy consumption can be highly saved while slightly decreasing the tensile strength by increasing layer thickness from 0.09 mm to 0.12 mm. Energy consumption and surface roughness can be decreased when setting laser power near 290 mW. Setting an appropriate over-cure of about 0.23 mm will improve tensile strength and dimensional accuracy with a little bit more energy consumption. The tensile strength increases nearby 5% at a scanning distance of 0.07 mm compared to that at a scanning distance of 0.1 mm while the energy consumption only increases by 1%.

Originality/value

In this research, energy consumption and multiple part quality for SLA are jointly analyzed first to accelerate the development of sustainable additive manufacturing. This can be used to assist designers to achieve energy-effective fabrication in the process design stage.

1 – 3 of 3