Search results

1 – 6 of 6
Article
Publication date: 8 July 2022

Xiaolong Yang, Long Zheng, Da Lü, Jinhao Wang, Shukun Wang, Hang Su, Zhixin Wang and Luquan Ren

Snake-inspired robots are of great significance in many fields because of their great adaptability to the environment. This paper aims to systematically illustrate the research…

1064

Abstract

Purpose

Snake-inspired robots are of great significance in many fields because of their great adaptability to the environment. This paper aims to systematically illustrate the research progress of snake-inspired robots according to their application environments. It classifies snake-inspired robots according to the numbers of degrees of freedom in each joint and briefly describes the modeling and control of snake-inspired robots. Finally, the application fields and future development trends of snake-inspired robots are analyzed and discussed.

Design/methodology/approach

This paper summarizes the research progress of snake-inspired robots and clarifies the requirements of snake-inspired robots for self-adaptive environments and multi-functional tasks. By equipping various sensors and tool modules, snake-inspired robots are developed from fixed-point operation in a single environment to autonomous operation in an amphibious environment. Finally, it is pointed out that snake-inspired robots will be developed in terms of rigid and flexible deformable structure, long endurance and multi-function and intelligent autonomous control.

Findings

Inspired by the modular and reconfigurable concepts of biological snakes, snake-inspired robots are well adapted to unknown and changing environments. Therefore, snake-inspired robots will be widely used in industrial, military, medical, post-disaster search and rescue applications. Snake-inspired robots have become a hot research topic in the field of bionic robots.

Originality/value

This paper summarizes the research status of snake-inspired robots, which facilitates the reader to be a comprehensive and systematic understanding of the research progress of snake-inspired robots. This helps the reader to gain inspiration from biological perspectives.

Details

Assembly Automation, vol. 42 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 8 May 2018

Xiaoliang Liu, Gai Zhao and Jinhao Qiu

The purpose of this paper is to investigate the effect of laser surface texturing on the tribological properties of polyimide composites and the output performance of traveling…

Abstract

Purpose

The purpose of this paper is to investigate the effect of laser surface texturing on the tribological properties of polyimide composites and the output performance of traveling wave rotary ultrasonic motor.

Design/methodology/approach

The surface texturing on polyimide composites specimens were fabricated by laser ablation process of different dimple densities, and then the tribological properties were tested by a flat-on-flat tribometer under dry conditions. Finally, the output performance of the traveling wave rotary ultrasonic motor was tested to verify the effectiveness of dimples surface texturing.

Findings

The results show that surface texturing can greatly enhance the friction coefficient of contact interface, especially the specimen with a dimple density of 7.06 per cent exhibited the highest friction coefficient among the specimens. When the input voltage is 500 V, the output power, locked-rotor torque and output torque of ultrasonic motor with textured PI of 7.06 per cent dimple density as friction material at the speed of 100 r/min increased by 13.8, 19 and 12.8 per cent compared to that of the untextured PTFE, respectively. When the ultrasonic motor reverses, the output performance is increased by 20.9, 40.3 and 17.7 per cent, respectively.

Originality/value

Surface texturing is an effective way to improve the friction behavior of polyimide composites and then correspondingly enhance the energy conversion efficiency and output performance of the traveling wave rotary ultrasonic motor.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 September 2018

Xiaoliang Liu, Jinhao Qiu and Gai Zhao

This paper aims to investigate the effect of frictional materials and surface texture on the energy conversion efficiency and the mechanical output performance of the ultrasonic…

Abstract

Purpose

This paper aims to investigate the effect of frictional materials and surface texture on the energy conversion efficiency and the mechanical output performance of the ultrasonic motor (USM).

Design/methodology/approach

A newly designed testing system was set up to measure the mechanical output performance of the USM. The influence of different frictional materials on the output performance of the USM was studied under the same assembly process and parameters. The surface texture was fabricated by laser ablation processing. The effects of surface texture and input parameters on the energy conversion efficiency and mechanical output performance of the USM were studied.

Findings

The results show that polyimide (PI) composites as frictional material can significantly improve the output performance of the USM compared to polytetrafluoroethylene (PTFE) composites. When the pre-load is 240 N, the energy conversion efficiency of the USM using textured PI composites as frictional material can reach 41.93 per cent, increased by 29.21 per cent compared to PTFE composites, and the effective output range of the USM is increased to 0.7-1.1 N m. Besides, the pre-load and surface texture have a great influence on the output performance of the USM.

Originality/value

PI composites can improve the mechanical output performance of the USM. Surface texture can also improve the interface tribological properties and the energy conversion efficiency based on the advanced frictional materials, which will contribute to the increment of the output performance of the USM under the same input conditions.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 18 January 2021

Hongxing Wang, LianZheng Ge, Ruifeng Li, Yunfeng Gao and Chuqing Cao

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research…

1050

Abstract

Purpose

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research also presents a motion optimization based on the 2-Norm of high-redundant mobile humanoid robots, in which a kinematic model is designed through the entire modeling.

Design/methodology/approach

The current study designs a highly redundant humanoid mobile robot with a differential mobile platform. The high-redundancy mobile humanoid robot consists of three modular parts (differential driving platform with two degrees of freedom (DOF), namely, left and right arms with seven DOF, respectively) and has total of 14 DOFs. Given the high redundancy of humanoid mobile robot, a kinematic model is designed through the entire modeling and an optimal solution extraction method based on 2-norm is proposed to solve the inverse kinematics multiple solutions problem. That is, the 2-norm of the angle difference before and after rotation is used as the shortest stroke index to select the optimal solution. The optimal solution of the inverse kinematics equation in the step is obtained by solving the minimum value of the objective function of a step. Through the step-by-step cycle in the entire tracking process, the kinematic optimization of the highly redundant humanoid robot in the entire tracking process is realized.

Findings

Compared with the before and after motion optimizations based on the 2-norm algorithm of the robot, its motion after optimization shows minimal fluctuation, improved smoothness, limited energy consumption and short path during the entire mobile tracking and operating process.

Research limitations/implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Practical implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Social implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Originality/value

Motion optimization based on the 2-norm of a highly redundant humanoid mobile robot with the entire modeling is performed on the basis of the entire modeling. This motion optimization can make the highly redundant humanoid mobile robot’s motion path considerably short, minimize energy loss and shorten time. These researches provide a theoretical basis for the follow-up research of the service robot, including tracking and operating target, etc. Finally, the motion optimization algorithm is verified by the tracking and operating behaviors of the robot and an example.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 19 July 2021

Song Quan, Yong Guo, Xuedong Liu, Zhewu Chen and Yudi Liu

This paper aims to study the lubrication and sealing performance on the textured piston pair under the cross action of the shape and structure parameters. This paper further…

Abstract

Purpose

This paper aims to study the lubrication and sealing performance on the textured piston pair under the cross action of the shape and structure parameters. This paper further carries out the optimization design of low energy consumption hydraulic impact piston pair.

Design/methodology/approach

Based on the characteristics of the ring gap seal piston pair, the flow field analysis model of the whole film gap is established for its periodic treatment. The friction power loss of the piston pair is defined as the evaluation index of the lubrication performance and the leakage power loss as the evaluation index of the sealing performance. The orthogonal test design and CFD software were used to analyze the lubrication and sealing performance of the textured piston pair.

Findings

The cross action of shape and structure factors has a great influence of the lubrication and sealing performance on the textured piston pair. Clearance and shape parameters have great influence on it, while seal length and depth diameter ratio have little influence. The sealing performance of conical textured piston pair is good, while the lubrication performance of square textured piston pair is good. The primary and secondary order of influence of shape and structure on energy consumption on piston pair is B (seal clearance) > C (texture shape) > D (area ratio) > A (seal length) > E (depth diameter ratio).

Originality/value

Breaking the defect of local optimization design on traditional piston pair structure, then find the matching relationship of structural parameters on textured piston pair. Further improve the lubrication and sealing performance of the piston pair, and provide reference for the global optimization design of the low energy consumption hydraulic impact piston pair.

Details

Industrial Lubrication and Tribology, vol. 74 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Access

Year

Content type

Article (6)
1 – 6 of 6