Search results

1 – 10 of 10
Article
Publication date: 5 January 2015

Zhenhui Xu and Hanlin Chen

– The purpose of this paper is to reveal the dynamical behavior of higher dimensional nonlinear wave by searching for the multi-wave solutions to the (3+1)-D Jimbo-Miwa equation.

Abstract

Purpose

The purpose of this paper is to reveal the dynamical behavior of higher dimensional nonlinear wave by searching for the multi-wave solutions to the (3+1)-D Jimbo-Miwa equation.

Design/methodology/approach

The authors apply bilinear form and extended homoclinic test approach to the (3+1)-D Jimbo-Miwa equation.

Findings

In this paper, by using bilinear form and extended homoclinic test approach, the authors obtain new cross-kink multi-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equation, including the periodic breathertype of kink three-soliton solutions, the cross-kink four-soliton solutions, the doubly periodic breather-type of soliton solutions and the doubly periodic breather-type of cross-kink two-soliton solutions. It is shown that the extended homoclinic test approach, with the help of symbolic computation, provides an effective and powerful mathematical tool for solving higher dimensional nonlinear evolution equations in mathematical physics.

Research limitations/implications

The research manifests that the structures of the solution to higher dimensional nonlinear equations are diversified and complicated.

Originality/value

The methods used in this paper can be widely applied to the research of spatial and temporal characteristics of nonlinear equations in physics and engineering technology. These methods are also conducive for people to know objective laws and grasp the essential features of the development of the world.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 November 2018

Lakhveer Kaur and Abdul-Majid Wazwaz

The purpose of this paper is to explore new reduced form of the (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili (BKP) equation by considering its bilinear equations

Abstract

Purpose

The purpose of this paper is to explore new reduced form of the (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili (BKP) equation by considering its bilinear equations, derived from connection between the Hirota’s transformation and Bell polynomials.

Design/methodology/approach

Based on the bilinear form of new reduced form of the (3 + 1)-dimensional generalized BKP equation, lump solutions with sufficient and necessary conditions to guarantee analyticity and rational localization of the solutions are discovered. Also, extended homoclinic approach is applied to considered equation for finding solitary wave solutions.

Findings

A class of the bright-dark lump waves are fabricated for studying different attributes of (3 + 1)-dimensional generalized BKP equation and some new exact solutions including kinky periodic solitary wave solutions and line breathers periodic are also obtained by Following the extended homoclinic approach.

Research limitations/implications

The paper presents that the implemented methods have emerged as a promising and robust mathematical tool to manage (3 + 1)-dimensional generalized BKP equation by using the Hirota’s bilinear equation.

Practical implications

By considering important characteristics of lump and solitary wave solutions, one can understand the shapes, amplitudes and velocities of solitons after the collision with another soliton.

Social implications

The analysis of these higher-dimensional nonlinear wave equations is not only of fundamental interest but also has important practical implications in many areas of mathematical physics and ocean engineering.

Originality/value

To the best of the authors’ knowledge, the acquired solutions given in various cases have not been reported for new reduced form of the (3 + 1)-dimensional generalized BKP equation in the literature. These obtained solutions are advantageous for researchers to know objective laws and grab the indispensable features of the development of the mathematical physics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2012

Vedat Suat Erturk, Ahmet Yıldırım, Shaher Momanic and Yasir Khan

The purpose of this paper is to propose an approximate method for solving a fractional population growth model in a closed system. The fractional derivatives are described in the…

Abstract

Purpose

The purpose of this paper is to propose an approximate method for solving a fractional population growth model in a closed system. The fractional derivatives are described in the Caputo sense.

Design/methodology/approach

The approach is based on the differential transform method. The solutions of a fractional model equation are calculated in the form of convergent series with easily computable components.

Findings

The diagonal Padé approximants are effectively used in the analysis to capture the essential behavior of the solution.

Originality/value

Illustrative examples are included to demonstrate the validity and applicability of the technique.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 November 2018

Jin-Jin Mao, Shou-Fu Tian and Tian-Tian Zhang

The purpose of this paper is to find the exact solutions of a (3 + 1)-dimensional non-integrable Korteweg-de Vries type (KdV-type) equation, which can be used to describe the…

Abstract

Purpose

The purpose of this paper is to find the exact solutions of a (3 + 1)-dimensional non-integrable Korteweg-de Vries type (KdV-type) equation, which can be used to describe the stability of soliton in a nonlinear media with weak dispersion.

Design/methodology/approach

The authors apply the extended Bell polynomial approach, Hirota’s bilinear method and the homoclinic test technique to find the rogue waves, homoclinic breather waves and soliton waves of the (3 + 1)-dimensional non-integrable KdV-type equation. The used approach formally derives the essential conditions for these solutions to exist.

Findings

The results show that the equation exists rogue waves, homoclinic breather waves and soliton waves. To better understand the dynamic behavior of these solutions, the authors analyze the propagation and interaction properties of the these solutions.

Originality/value

These results may help to investigate the local structure and the interaction of waves in KdV-type equations. It is hoped that the results can help enrich the dynamic behavior of such equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Na Liu

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves…

41

Abstract

Purpose

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves propagating in the ocean or is used for simulating weather.

Design/methodology/approach

Hirota bilinear form and the direct method are used to construct breather and lump-kink solutions of the GSWW equation. The “rational-cosh-cos-type” test function is applied to obtain three kinds of interaction solutions.

Findings

The fusion and fission of the interaction solutions between a lump wave and a 1-kink soliton of the GSWW equation are studied. The dynamics of three kinds of interaction solutions between lump, kink and periodic waves are discussed graphically.

Originality/value

This paper studies the breather, lump-kink and interaction solutions of the GSWW equation by using various approaches and provides some phenomena that have not been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 December 2020

Na Liu

The purpose of this paper is to study the homoclinic breather waves, rogue waves and multi-soliton waves of the (2 + 1)-dimensional Mel’nikov equation, which describes an…

Abstract

Purpose

The purpose of this paper is to study the homoclinic breather waves, rogue waves and multi-soliton waves of the (2 + 1)-dimensional Mel’nikov equation, which describes an interaction of long waves with short wave packets.

Design/methodology/approach

The author applies the Hirota’s bilinear method, extended homoclinic test approach and parameter limit method to construct the homoclinic breather waves and rogue waves of the (2 + 1)-dimensional Mel’nikov equation. Moreover, multi-soliton waves are constructed by using the three-wave method.

Findings

The results imply that the (2 + 1)-dimensional Mel’nikov equation has breather waves, rogue waves and multi-soliton waves. Moreover, the dynamic properties of such solutions are displayed vividly by figures.

Research limitations/implications

This paper presents efficient methods to find breather waves, rogue waves and multi-soliton waves for nonlinear evolution equations.

Originality/value

The outcome suggests that the extreme behavior of the homoclinic breather waves yields the rogue waves. Moreover, the multi-soliton waves are constructed, including the new breather two-solitary and two-soliton solutions. Meanwhile, the dynamics of these solutions will greatly enrich the diversity of the dynamics of the (2 + 1)-dimensional Mel’nikov equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 May 2012

Ahmet Yıldırım and Hüseyin Koçak

The purpose of this paper is to implement the variational iteration method and the homotopy perturbation method to give a rational approximation solution of the foam drainage…

Abstract

Purpose

The purpose of this paper is to implement the variational iteration method and the homotopy perturbation method to give a rational approximation solution of the foam drainage equation with time‐ and space‐fractional derivatives.

Design/methodology/approach

The fractional derivatives are described in the Caputo sense. In these schemes, the solution takes the form of a convergent series with easily computable components.

Findings

Numerical examples are given to demonstrate the effectiveness of the present methods.

Originality/value

Results show that the proposed schemes are very effective and convenient for solving linear and nonlinear fractional differential equations with high accuracy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 July 2020

Jian-Gen Liu, Yi-Ying Feng and Hong-Yi Zhang

The purpose of this paper is to construct the algebraic traveling wave solutions of the (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsve (KdV-Z-K) equation, which can be…

Abstract

Purpose

The purpose of this paper is to construct the algebraic traveling wave solutions of the (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsve (KdV-Z-K) equation, which can be usually used to express shallow water wave phenomena.

Design/methodology/approach

The authors apply the planar dynamical systems and invariant algebraic cure approach to find the algebraic traveling wave solutions and rational solutions of the (3 + 1)-dimensional modified KdV-Z-K equation. Also, the planar dynamical systems and invariant algebraic cure approach is applied to considered equation for finding algebraic traveling wave solutions.

Findings

As a result, the authors can find that the integral constant is zero and non-zero, the algebraic traveling wave solutions have different evolutionary processes. These results help to better reveal the evolutionary mechanism of shallow water wave phenomena and find internal connections.

Research limitations/implications

The paper presents that the implemented methods as a powerful mathematical tool deal with (3 + 1)-dimensional modified KdV-Z-K equation by using the planar dynamical systems and invariant algebraic cure.

Practical implications

By considering important characteristics of algebraic traveling wave solutions, one can understand the evolutionary mechanism of shallow water wave phenomena and find internal connections.

Originality/value

To the best of the authors’ knowledge, the algebraic traveling wave solutions have not been reported in other places. Finally, the algebraic traveling wave solutions nonlinear dynamics behavior was shown.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 August 2023

Kang-Jia Wang

The purpose of this paper is to study the new (3 + 1)-dimensional integrable fourth-order nonlinear equation which is used to model the shallow water waves.

Abstract

Purpose

The purpose of this paper is to study the new (3 + 1)-dimensional integrable fourth-order nonlinear equation which is used to model the shallow water waves.

Design/methodology/approach

By means of the Cole–Hopf transform, the bilinear form of the studied equation is extracted. Then the ansatz function method combined with the symbolic computation is implemented to construct the breather, multiwave and the interaction wave solutions. In addition, the subequation method tis also used to search for the diverse travelling wave solutions.

Findings

The breather, multiwave and the interaction wave solutions and other wave solutions like the singular periodic wave structure and dark wave structure are obtained. To the author’s knowledge, the solutions obtained are all new and have never been reported before.

Originality/value

The solutions obtained in this work have never appeared in other literature and can be regarded as an extension of the solutions for the new (3 + 1)-dimensional integrable fourth-order nonlinear equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2022

Baljinder Kour, Mustafa Inc and Ashish Arora

The purpose of this paper is to present the residual power series method for solving the space time fractional variable coefficients Ito system.

Abstract

Purpose

The purpose of this paper is to present the residual power series method for solving the space time fractional variable coefficients Ito system.

Design/methodology/approach

A weighted algorithm based on the residual power series method is used numerical solution of the space time fractional Ito system variable coefficients. The authors show that this technique yields the analytical solution of the desired problem in the form of a rapidly convergent series with easily computable components.

Findings

The authors illustrate that the proposed method produces satisfactory results with respect to the other semi analytical methods. The reliability of the method and the reduction in the size of computational domain give this method a wider applicability.

Originality/value

This research presents, for the first time, a new modification of the proposed technique for aforementioned problems and some interesting results are obtained.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 10