Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 4 of 4
To view the access options for this content please click here
Article
Publication date: 17 June 2020

Experimental study on shear behavior of hollow slab beam strengthened with pasting steel plates

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Jigang Han

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate…

HTML
PDF (1.3 MB)

Abstract

Purpose

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate was adopted to shear strengthen a 16 m prestressed concrete hollow slab, which had serviced 20 years in cold regions. The shear properties of shear strengthen beams are analyzed.

Design/methodology/approach

Shear loading test of the shear strengthened beam and the contrast beam was conducted. Then the mechanical characteristics, failure mechanism, the mechanical response and shear capacity of shear strengthened beam and contrast beam had been discussed.

Findings

The failure mode of shear strengthened beam and contrast beam was shear compression failure, and the bond failure between concrete and prestressed reinforcement happened in both of test beams. The shear strengthening method of pasting steel plate can effectively improve the mechanical response for the shear strengthened beam. Compared with the contrast beam, the cracking load and failure shear capacity for the shear strengthened beam can be effectively increased by 12.2 and 27.6%, respectively.

Originality/value

The research results can be a reference for the detection and evaluation of shear strengthened bridges, which are strengthened by pasting steel plate. Engineers can refer to the shear strengthening method in this paper to strengthen the existing bridge, which can guarantee the safety of shear strengthened bridges.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-04-2020-0038
ISSN: 1757-9864

Keywords

  • In-service prestressed concrete bridge
  • Shear strengthened technology
  • Pasting steel plate
  • Shear compression failure
  • Shear capacity

To view the access options for this content please click here
Article
Publication date: 12 August 2019

Analysis of loss in flexural stiffness of in-service prestressed hollow plate beam

Guanhua Zhang, Jiawei Wang, Jinliang Liu, Yanmin Jia and Jigang Han

During service, cracks are caused in prestressed concrete beams owing to overload or other non-load factors. These cracks significantly affect the safety of bridge…

HTML
PDF (579 KB)

Abstract

Purpose

During service, cracks are caused in prestressed concrete beams owing to overload or other non-load factors. These cracks significantly affect the safety of bridge structures. The purpose of this paper is to carry out a non-linear iterative calculation for a section of a prestressed concrete beam and obtain the change in stiffness after the section cracks.

Design/methodology/approach

The existing stress of prestressed reinforcement was measured by performing a boring stress release test on two pieces of an in-service 16 m prestressed concrete hollow plate. Considering the non-linear effects of materials, the calculation model of the loss in the flexural stiffness of the prestressed concrete beam was established based on the existing prestress. The accuracy of the non-linear calculation method and the results obtained for the section were verified by conducting a bending destruction test on two pieces of the 16 m prestressed concrete hollow plate in the same batch and by utilising the measured strain and displacement data on the concrete at the top edge of the midspan section under all load levels.

Findings

The flexural stiffness of the section decreases rapidly at first and then gradually, and structural rigidity is sensitive to the initial cracking of the beam. The method for calculating the loss in the flexural stiffness of the section established with the existing stress of prestressed reinforcement as a parameter is accurate and feasible. It realizes the possibility of assessing the loss in the rigidity of a prestressed concrete structure by adopting the existing stress of prestressed reinforcement as a parameter.

Originality/value

A method for quickly determining the loss in the stiffness of structures using existing prestress is established. By employing this method, engineers can rapidly determine whether a bridge is dangerous or not without performing a loading test. Thus, this method not only ensures the safety of human life, but also reduces the cost of testing.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-09-2018-0055
ISSN: 1757-9864

Keywords

  • Bending test
  • Bridge engineering
  • Existing prestress
  • Non-linear iteration

To view the access options for this content please click here
Article
Publication date: 1 October 2018

Experimental study on prestressed concrete hollow slabs in service strengthened with prestressed CFRP plates

Jiawei Wang, Yanmin Jia, Guanhua Zhang, Jigang Han and Jinliang Liu

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer…

HTML
PDF (922 KB)

Abstract

Purpose

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates to existing bridges. Hence, the actual capacity for strengthening existing bridges with prestressed CFRP plates is becoming an important concern for researchers. The paper aims to discuss these issues.

Design/methodology/approach

Static load tests of in-service prestressed concrete hollow slabs before and after strengthening are conducted. Based on the results of the tests, the failure characteristics, failure mechanism and bending performance of the slabs are compared and analyzed. Nonlinear finite element method is also used to calculate the flexural strength of the strengthened beams prestressed with CFRP plates.

Findings

Test results show that prestressed CFRP plate strengthening technology changes the failure mode of hollow slabs, delays the development of deflection and cracks, raises cracking and ultimate load-carrying capacity and remarkably improves mechanical behavior of the slab. In addition, the nonlinear finite element analyses are in good agreement with the test results.

Originality/value

Strengthening with prestressed CFRP plates has greater advantages compared to traditional CFRP plate strengthening technology and improves active material utilization. The presented finite element method can be applied in the flexural response calculations of strengthened beams prestressed with CFRP plates. The research results provide technical basis for maintenance and reinforcement design of existing bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-08-2017-0049
ISSN: 1757-9864

Keywords

  • Finite element analysis
  • Prestressed CFRP plate
  • Prestressed concrete hollow slab
  • Static load test
  • Strengthening

To view the access options for this content please click here
Article
Publication date: 11 September 2019

A practical review and taxonomy of fuzzy expert systems: methods and applications

Madjid Tavana and Vahid Hajipour

Expert systems are computer-based systems that mimic the logical processes of human experts or organizations to give advice in a specific domain of knowledge. Fuzzy expert…

HTML
PDF (1.2 MB)

Abstract

Purpose

Expert systems are computer-based systems that mimic the logical processes of human experts or organizations to give advice in a specific domain of knowledge. Fuzzy expert systems use fuzzy logic to handle uncertainties generated by imprecise, incomplete and/or vague information. The purpose of this paper is to present a comprehensive review of the methods and applications in fuzzy expert systems.

Design/methodology/approach

The authors have carefully reviewed 281 journal publications and 149 conference proceedings published over the past 37 years since 1982. The authors grouped the journal publications and conference proceedings separately accordingly to the methods, application domains, tools and inference systems.

Findings

The authors have synthesized the findings and proposed useful suggestions for future research directions. The authors show that the most common use of fuzzy expert systems is in the medical field.

Originality/value

Fuzzy logic can be used to manage uncertainty in expert systems and solve problems that cannot be solved effectively with conventional methods. In this study, the authors present a comprehensive review of the methods and applications in fuzzy expert systems which could be useful for practicing managers developing expert systems under uncertainty.

Details

Benchmarking: An International Journal, vol. 27 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/BIJ-04-2019-0178
ISSN: 1463-5771

Keywords

  • Fuzzy logic
  • Knowledge-based system
  • Application domains
  • Expert system
  • Inference system

Access
Only content I have access to
Only Open Access
Year
  • Last 12 months (1)
  • All dates (4)
Content type
  • Article (3)
  • Earlycite article (1)
1 – 4 of 4
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here