Search results

1 – 1 of 1
Article
Publication date: 3 May 2016

Hong Ju, Jiejing Chen, Can Sun and Yan Li

The purpose of this study is to perform quantum chemical calculations based on the DFT method on four bipyrazoles used as corrosion inhibitors for the plain carbon (“mild”) steel…

Abstract

Purpose

The purpose of this study is to perform quantum chemical calculations based on the DFT method on four bipyrazoles used as corrosion inhibitors for the plain carbon (“mild”) steel in acid media to determine the relationship between inhibition efficiency and the molecular structure of inhibitors.

Design/methodology/approach

Several quantum chemical parameters, such as the charge distribution, energy and distribution of highest occupied molecular orbital and lowest unoccupied molecular orbital, the absolute electronegativity (χ) values and the fraction of electrons (△N) transferring from inhibitors to the steel surface, were calculated and correlated with inhibition efficiencies.

Findings

The results showed that the inhibition efficiency of bipyrazole increased with the increasing in EHOMO, and the areas containing N atoms were the most probable sites to donate electrons for adsorbing the inhibitor molecules onto the metal surface.

Originality/value

It is a useful method to investigate the mechanisms of reaction by calculating the structure and electronic parameters, which can be obtained by means of theoretical quantum theory. Thus, the behavior and mechanism of the organic inhibitors can be obtained. Quantum chemical method can also be used to guide the selection and molecular design of inhibitors.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 1 of 1