Search results

1 – 3 of 3
To view the access options for this content please click here
Article
Publication date: 31 July 2019

Hui Quan, Yi Chai, Rennian Li and Jianhui Guo

The special structure of the vortex pump contributes to its complex internal flow pattern. A type of horizontal 150WX-200-20 vortex pump is taken as a research subject to…

Abstract

Purpose

The special structure of the vortex pump contributes to its complex internal flow pattern. A type of horizontal 150WX-200-20 vortex pump is taken as a research subject to deeply study the progression and distribution of flow pattern in its channel. To explain the mechanism of flow in this pump, numerical analysis of the whole flow and experiment have been conducted.

Design/methodology/approach

The authors studied and analyzed the distribution and evolution of flow pattern under different flow, such as circulating-flow, through-flow and other forms. Finally, a model of flow pattern in the vortex pump has been built, which has more perfectly fit the reality.

Findings

They are through-flow affected by circulating-flow, main and subsidiary circulating-flow, vortices between vanes and other vortices (or liquid impingement) in volute. Entering the pump, part of the flow stays in vanes and turn into vortices while the other goes into the front chamber. The flow that runs into the front chamber will be divided into two parts. One part will be collected by viscosity into a vortex rope when it passing through the interface between the impeller and the vaneless chamber, which closely relates to the circulating-flow, and the rest directly goes out of the field through the diffuser. Besides, a fraction of circulating-flow joins the through-flow when it goes through the section V and leaves the pump.

Originality/value

The research results build a theoretical foundation for working out the flow mechanism of the vortex pump, improving its efficiency and optimizing its hydraulic design.

Details

Engineering Computations, vol. 36 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 4 December 2018

Mustafa Öcal and Recep Sadeler

The purpose of this study is to describe the environmentally assisted cracking (EAC) of AISI 316L stainless steel as bare and coated cases in several corrosion…

Abstract

Purpose

The purpose of this study is to describe the environmentally assisted cracking (EAC) of AISI 316L stainless steel as bare and coated cases in several corrosion environments. The main purpose of this study is to extend the lifespan of 316L material under corrosive fatigue in sodium chloride environments.

Design/methodology/approach

Fatigue tests carried out by using a Schenk type plane bending fatigue machine made by Tokyokoki Co. A scanning electron microscope (SEM) was used to observe the fracture surfaces and tested specimen surfaces. The micro-Vickers hardness of specimens was measured by using a PC-controlled Buehler–Omnimet tester.

Findings

Under reciprocating bending condition (R = −1) the behavior of 316L SS bare samples and 316L SS coated with Al-5%Mg samples were investigated comparatively at room temperature in ambient air and in several corrosion solutions. The results obtained from the data showed that Al-5Mg coating procedure significantly stabilized the 316L SS even in the most aggressive environment 5 per cent NaCl solution as compared with bare samples.

Originality/value

Al-5Mg coating showed a stable structure under the corrosion liquids used in the experiments. The coating material served as a stable barrier between the base material and the corrosion fluid, thus ensuring a tightness even in long-term tests below the endurance limit.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 1 January 2014

Xugang Zhang, Bin Zhang, Mingming Sun, Jianhui Li, Lei Wang and Chuanli Qin

– In order to obtain functionalized core-shell nanoparticles (CSNPs) as excellent toughening agents for epoxy resins. The paper aims to discuss these issues.

Abstract

Purpose

In order to obtain functionalized core-shell nanoparticles (CSNPs) as excellent toughening agents for epoxy resins. The paper aims to discuss these issues.

Design/methodology/approach

Functionalized CSNPs containing epoxy groups on the surface were synthesized by emulsion polymerization with butyl acrylate as the core and methyl methacrylate copolymerizing with glycidyl methacrylate (GMA) as the shell. CSNPs were used as toughening agents for epoxy resins and their chemical structure was characterized by FT-IR. The morphology of modified epoxy networks (MEPN) was analyzed by SEM and TEM. Both the mechanical properties and thermodynamic properties were studied.

Findings

The results show that nearly spherical CSNPs with the particle size of 50-100 nm are obtained. A certain amount of CSNPs are uniformly dispersed in epoxy resins by the grinding method and the MEPN shows the ductile fracture feature. The miscibility between CSNPs and epoxy matrix increases with the increase of GMA concentration which makes more bonds form between them. Epoxy resins toughened with 10 wt% CSNPs containing 10 wt% GMA show the best mechanical properties and the increase in tensile strength and impact strength of the MEPN is 13.5 and 59.7 percent, respectively, over the unmodified epoxy networks. And the improvement in impact strength is not accompanied with loss of thermal resistance.

Practical implications

The MEPN can be used as high-performance materials such as adhesives, sealants and matrixes of composites.

Originality/value

The functionalized CSNPs are novel and it can greatly increase the toughness of epoxy resins without loss of thermal resistance.

Details

Pigment & Resin Technology, vol. 43 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 3 of 3