Search results

1 – 10 of 13
Article
Publication date: 29 March 2022

Min Wang and Jiahao Du

In the Information Age, an increasing number of firms and researchers focus on consumer privacy. Meanwhile, many firms that collect consumer information through, information…

Abstract

Purpose

In the Information Age, an increasing number of firms and researchers focus on consumer privacy. Meanwhile, many firms that collect consumer information through, information disclosure, consumer privacy, agency model, distribution contracts products or services often adopt the agency contract or the wholesale contract to sell through the online platform. This study aims to examine how different distribution contracts affect supply chain decisions when the firm can profit from disclosing consumer information.

Design/methodology/approach

The authors use Stackelberg model to describe the relationship between consumer privacy and distribution contracts. Solve the model and analyze the monotonicity of the equilibrium results. The optimal contract choice and win-win conditions are obtained by comparing the profits under different contracts.

Findings

The authors find that when consumers’ maximal valuation is low in the market, the firm prefers to profit from disclosing consumer information under both the agency contract and the wholesale contract. As consumers’ maximal valuation increases, the firm turns to profit from product sales. Under the agency contract, the platform only generates profit when the consumers’ maximal valuation is high. By comparing the profits of the platform under the two types of contracts, the authors find the platform’s optimal contract choice under different consumers’ maximal valuations and platform commission rates. Combined with the comparison results of the firm’s profit, the authors provide the win-win conditions under the agency contract and wholesale contract.

Originality/value

This study analyzes the supply chain decision under the agency contract and wholesale contract, and it helps deepen the understanding of the interaction between consumer information disclosure and channel distribution contract.

Details

Journal of Modelling in Management, vol. 18 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 10 May 2021

Jiahao Shi, Ling Weng, Xiaoming Wang, Xue Sun, Shuqiang Du, Feng Gao and Xiaorui Zhang

Epoxy resin (EP) is a kind of thermosetting resin, and its application is usually limited by poor toughness. In this case, a type of new flexible chain blocking hyperbranched…

Abstract

Purpose

Epoxy resin (EP) is a kind of thermosetting resin, and its application is usually limited by poor toughness. In this case, a type of new flexible chain blocking hyperbranched polyester (HBP) was designed and synthesized. The purpose of this study is to enhance the toughness and dielectric properties of EP.

Design/methodology/approach

P-toluene sulfonic acid was used as the catalyst, with dimethy propionic acid as the branch unit and pentaerythritol as the core in the experiment. Then, n-hexanoic acid and n-caprylic acid were, respectively, put to gain HBP with a n-hexanoic acid and n-caprylic acid capped structure. The microstructure, mechanical properties, insulation properties and dielectric properties of the composite were characterized for the purpose of finding the appropriate proportion of HBP.

Findings

HBP enhanced the toughness of epoxy-cured products by interpenetrating polymer network structure between the flexible chain of HBP and the EP molecular chain. Meanwhile, HBP reduced the ε and tgδ of the epoxy anhydride-cured product by reducing the number of polar groups per unit volume of the EP through free volumes.

Research limitations/implications

Yet EP is a kind of thermosetting resin, which is widely used in coating, aerospace, electronics, polymer composites and military fields, but it is usually limited by poor toughness. In a word, it is an urgent priority to develop new EP with better toughness and mechanical properties.

Originality/value

At present, HBP has been applied as a new kind of toughening strategy and as a modifier for EP. According to the toughening mechanism of HBP modified EP, the free volume of HBP creates a space for the EP molecule to move around when loaded. Moreover, the free volume could cause the dielectric constant of EP to diminish by reducing the content of polarizable groups. Meanwhile, the addition of HBP with flexible chains grafted to the EP could develop an interpenetrating network structure, thus further enhancing the toughness of EP

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 June 2023

Jiahao Liu, Tao Gu and Zhixue Liao

The purpose of this paper is to consider three factors, namely, intra-week demand fluctuations, interrelationship between the number of robots and order scheduling and conflicting…

Abstract

Purpose

The purpose of this paper is to consider three factors, namely, intra-week demand fluctuations, interrelationship between the number of robots and order scheduling and conflicting objectives (i.e. cost minimization and customer satisfaction maximization), to optimize the robot logistics system.

Design/methodology/approach

The number of robots and the sequence of delivery orders are first optimized using the heuristic algorithm NSGACoDEM, which is designed using genetic algorithm and composite difference evolution. The superiority of this method is then confirmed by a case study of a four-star grade hotel in South Korea and several comparative experiments.

Findings

Two performance metrics reveal the superior performance of the proposed approach compared to other baseline approaches. Results of comparative experiments found that the consideration of three influencing factors in the operation design of a robot logistic system can effectively balance cost and customer satisfaction over the course of a week in hotel operation and optimize robot scheduling flexibility.

Practical implications

The results of this study reveal that numerous factors (e.g. intra-week demand fluctuations) can optimize the performance efficiency of robots. The proposed algorithm can be used by hotels to overcome the influence of intra-week demand fluctuations on robot scheduling flexibility effectively and thereby enhance work efficiency.

Originality/value

The design of a novel algorithm in this study entails enhancing the current robot logistics system. This algorithm can successfully manage cost and customer satisfaction during off-seasons and peak seasons in the hotel industry while offering diversified schemes to various types of hotels.

Details

International Journal of Contemporary Hospitality Management, vol. 36 no. 1
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 9 April 2024

Lu Wang, Jiahao Zheng, Jianrong Yao and Yuangao Chen

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although…

Abstract

Purpose

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although there are some models that can handle such problems well, there are still some shortcomings in some aspects. The purpose of this paper is to improve the accuracy of credit assessment models.

Design/methodology/approach

In this paper, three different stages are used to improve the classification performance of LSTM, so that financial institutions can more accurately identify borrowers at risk of default. The first approach is to use the K-Means-SMOTE algorithm to eliminate the imbalance within the class. In the second step, ResNet is used for feature extraction, and then two-layer LSTM is used for learning to strengthen the ability of neural networks to mine and utilize deep information. Finally, the model performance is improved by using the IDWPSO algorithm for optimization when debugging the neural network.

Findings

On two unbalanced datasets (category ratios of 700:1 and 3:1 respectively), the multi-stage improved model was compared with ten other models using accuracy, precision, specificity, recall, G-measure, F-measure and the nonparametric Wilcoxon test. It was demonstrated that the multi-stage improved model showed a more significant advantage in evaluating the imbalanced credit dataset.

Originality/value

In this paper, the parameters of the ResNet-LSTM hybrid neural network, which can fully mine and utilize the deep information, are tuned by an innovative intelligent optimization algorithm to strengthen the classification performance of the model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 25 June 2024

Jiahao Zhang and Yu Wei

This study conducts a comparative analysis of the diversification effects of China's national carbon market (CEA) and the EU ETS Phase IV (EUA) within major commodity markets.

Abstract

Purpose

This study conducts a comparative analysis of the diversification effects of China's national carbon market (CEA) and the EU ETS Phase IV (EUA) within major commodity markets.

Design/methodology/approach

The study employs the TVP-VAR extension of the spillover index framework to scrutinize the information spillovers among the energy, agriculture, metal, and carbon markets. Subsequently, the study explores practical applications of these findings, emphasizing how investors can harness insights from information spillovers to refine their investment strategies.

Findings

First, the CEA provide ample opportunities for portfolio diversification between the energy, agriculture, and metal markets, a desirable feature that the EUA does not possess. Second, a portfolio comprising exclusively energy and carbon assets often exhibits the highest Sharpe ratio. Nevertheless, the inclusion of agricultural and metal commodities in a carbon-oriented portfolio may potentially compromise its performance. Finally, our results underscore the pronounced advantage of minimum spillover portfolios; particularly those that designed minimize net pairwise volatility spillover, in the context of China's national carbon market.

Originality/value

This study addresses the previously unexplored intersection of information spillovers and portfolio diversification in major commodity markets, with an emphasis on the role of CEA.

Details

China Finance Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1398

Keywords

Article
Publication date: 18 November 2024

Jiahao Ge, Jinwu Xiang and Daochun Li

A densely distributed network radar system compensates for the disadvantages of sparse radars and poses a significant threat to low-altitude penetration by an unmanned combat…

Abstract

Purpose

A densely distributed network radar system compensates for the disadvantages of sparse radars and poses a significant threat to low-altitude penetration by an unmanned combat aerial vehicle (UCAV). Unlike previous studies, this paper aims to consider radar blind areas and proposes a rapid online method for planning low-altitude penetration paths.

Design/methodology/approach

First, the optimization problem coupling digital elevation map (DEM), radar detection probability model and nonholonomic UCAV kinematic model is established. Second, an online solution framework of penetration path planning is constructed. An intervisibility method and map scaling are proposed to generate a detection probability map (DPM). Through completeness and consistency analysis, an adaptive hybrid A* algorithm with fast local replanning strategy is proposed to search a path that takes into account time-consuming, detection probability under nonholonomic constraints. Finally, three scenarios of multiple known, pop-up and vanished static radars are simulated using C++. The computational performance is compared and analyzed.

Findings

The results showed that the proposed online method can generate low-detection-probability penetration paths within subseconds.

Originality/value

This paper provides a new online method to plan UCAV penetration trajectory in military and academic contexts.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 20 August 2024

Jianyong Liu, Xueke Luo, Long Li, Fangyuan Liu, Chuanyang Qiu, Xinghao Fan, Haoran Dong, Ruobing Li and Jiahao Liu

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This…

Abstract

Purpose

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This work proposes a method of composite processing of EDM and ultrasonic vibration drilling for machining precision micro-holes in complex positions of superalloys.

Design/methodology/approach

A six-axis computer numerical control (CNC) machine tool was developed, whose software control system adopted a real-time control architecture that integrates electrical discharge and ultrasonic vibration drilling. Among them, the CNC system software was developed based on Windows + RTX architecture, which could process the real-time processing state received by the hardware terminal and adjust the processing state. Based on the SoC (System on Chip) technology, an architecture for a pulse generator was developed. The circuit of the pulse generator was designed and implemented. Additionally, a composite mechanical system was engineered for both drilling and EDM. Two sets of control boards were designed for the hardware terminal. One set was the EDM discharge control board, which detected the discharge state and provided the pulse waveform for turning on the transistor. The other was a relay control card based on STM32, which could meet the switch between EDM and ultrasonic vibration, and used the Modbus protocol to communicate with the machining control software.

Findings

The mechanical structure of the designed composite machine tool can effectively avoid interference between the EDM spindle and the drilling spindle. The removal rate of the remelting layer on 1.5 mm single crystal superalloys after composite processing can reach over 90%. The average processing time per millimeter was 55 s, and the measured inner surface roughness of the hole was less than 1.6 µm, which realized the  micro-hole machining without remelting layer, heat affected zone and micro-cracks in the single crystal superalloy.

Originality/value

The test results proved that the key techniques developed in this paper were suite for micro-hole machining of special materials.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 3
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 25 January 2024

Zeye Fu, Jiahao Zou, Luxin Han and Qi Zhang

A model for calculating the global overpressure time history of a single cloud detonation from overpressure time history of discrete positions in the range of single cloud…

Abstract

Purpose

A model for calculating the global overpressure time history of a single cloud detonation from overpressure time history of discrete positions in the range of single cloud detonation is to be proposed and verified. The overpressure distribution produced by multiple cloud detonation and the influence of cloud spacing and fuel mass of every cloud on the overpressure distribution are to be studied.

Design/methodology/approach

A calculation method is used to obtain the global overpressure field distribution after single cloud detonation from the overpressure time history of discrete distance to detonation center after single cloud detonation. On this basis, the overpressure distribution produced by multi-cloud under different cloud spacing and different fuel mass conditions is obtained.

Findings

The results show that for 150 kg fuel, when the spacing of three clouds is 40 m, 50 m, respectively, the overpressure range of larger than 0.1 MPa is 5496.48 mˆ2 and 6235.2 mˆ2, which is 2.89 times and 3.28 times of that of single cloud detonation. The superposition effect can be ignored when the spacing between the three clouds is greater than 60 m. In the case of fixed cloud spacing, once the overpressure forms continuous effective superposition, the marginal utility of fuel decreases.

Originality/value

A model for calculating the global overpressure time history of a single cloud detonation from overpressure time history of discrete positions in the range of single cloud detonation is proposed and verified. Based on this method, the global overpressure field of single cloud detonation is reconstructed, and the superimposed overpressure distribution characteristics of three cloud detonation are calculated and analyzed.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 May 2024

Jiahao Jiang, Jinliang Liu, Shuolei Cao, Sheng Cao, Rui Dong and Yusen Wu

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major…

Abstract

Purpose

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major factor affecting the shear capacity. This research aims to provide guidance for studying the shear capacity of GPC and to observe how the failure modes of beams change with the variation of the shear-span ratio, thereby discovering underlying patterns.

Design/methodology/approach

Three test beams with shear span ratios of 1.5, 2.0 and 2.5 are investigated in this paper. For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities are 337kN, 235kN and 195kN, respectively. Transitioning from 1.5 to 2.0 results in a 30% decrease in capacity, a reduction of 102kN. Moving from 2.0 to 2.5 sees a 17% decrease, with a loss of 40KN in capacity. A shear capacity formula, derived from modified compression field theory and considering concrete shear strength, stirrups and aggregate interlocking force, was validated through finite element modeling. Additionally, models with shear ratios of 1 and 3 were created to observe crack propagation patterns.

Findings

For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities of 337KN, 235KN and 195KN are achieved, respectively. A reduction in capacity of 102KN occurs when transitioning from 1.5 to 2.0 and a decrease of 40KN is observed when moving from 2.0 to 2.5. The average test-to-theory ratio, at 1.015 with a variance of 0.001, demonstrates strong agreement. ABAQUS models beams with ratios ranging from 1.0 to 3.0, revealing crack trends indicative of reduced crack angles with higher ratios. The failure mode observed in the models aligns with experimental results.

Originality/value

This article provides a reference for the shear bearing capacity formula of geopolymer reinforced concrete (GRC) beams, addressing the limited research in this area. Additionally, an exponential model incorporating the shear-span ratio as a variable was employed to calculate the shear capacity, based on previous studies. Moreover, the analysis of shear capacity results integrated literature from prior research. By fitting previous experimental data to the proposed formula, the accuracy of this study's derived formula was further validated, with theoretical values aligning well with experimental results. Additionally, guidance is offered for utilizing ABAQUS in simulating the failure process of GRC beams.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 22 June 2021

Jiahao Wang, Guodong Xia, Ran Li, Dandan Ma, Wenbin Zhou and Jun Wang

This study aims to satisfy the thermal management of gallium nitride (GaN) high-electron mobility transistor (HEMT) devices, microchannel-cooling is designed and optimized in this…

Abstract

Purpose

This study aims to satisfy the thermal management of gallium nitride (GaN) high-electron mobility transistor (HEMT) devices, microchannel-cooling is designed and optimized in this work.

Design/methodology/approach

A numerical simulation is performed to analyze the thermal and flow characteristics of microchannels in combination with computational fluid dynamics (CFD) and multi-objective evolutionary algorithm (MOEA) is used to optimize the microchannels parameters. The design variables include width and number of microchannels, and the optimization objectives are to minimize total thermal resistance and pressure drop under constant volumetric flow rate.

Findings

In optimization process, a decrease in pressure drop contributes to increase of thermal resistance leading to high junction temperature and vice versa. And the Pareto-optimal front, which is a trade-off curve between optimization objectives, is obtained by MOEA method. Finally, K-means clustering algorithm is carried out on Pareto-optimal front, and three representative points are proposed to verify the accuracy of the model.

Originality/value

Each design variable on the effect of two objectives and distribution of temperature is researched. The relationship between minimum thermal resistance and pressure drop is provided which can give some fundamental direction for microchannels design in GaN HEMT devices cooling.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 13