Search results

1 – 10 of over 4000
Article
Publication date: 24 May 2013

A.S. Zymaris, D.I. Papadimitriou, E.M. Papoutsis‐Kiachagias, K.C. Giannakoglou and C. Othmer

The purpose of this paper is to propose the use of the continuous adjoint method as a tool to identify the appropriate location and “type” (suction or blowing) of steady jets used…

Abstract

Purpose

The purpose of this paper is to propose the use of the continuous adjoint method as a tool to identify the appropriate location and “type” (suction or blowing) of steady jets used in active flow control systems.

Design/methodology/approach

The method is based on continuous adjoint and covers both internal and external aerodynamics. The adjoint equations, including the adjoint to the SpalartAllmaras turbulence model and their boundary conditions are formulated. At the cost of solving the flow and adjoint equations just once, the sensitivity derivatives of the objective function with respect to hypothetical (normal) jet velocities at all wall nodes are computed. Comparisons of the computed sensitivities with finite differences and parametric studies to assess the present method are included.

Findings

Though the sensitivities are computed for zero jet velocities, they adequately support decision making on: the recommended location of jet(s), at boundary nodes with high absolute valued sensitivities; and the selection between suction or blowing jets, based on the sign of the computed sensitivities. Regarding adjoint methods, two important findings of this work are: the role of the adjoint pressure which proves to be an excellent sensor in flow control problems; and the prediction accuracy of the proposed adjoint method compared to the commonly made assumption of “frozen turbulence”.

Originality/value

First use of the continuous adjoint method using full differentiation of the turbulence model, in flow control optimization. A low‐cost design tool for recommending some of the most important jet characteristics.

Details

Engineering Computations, vol. 30 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 September 2017

Philipp Schloesser, Michael Meyer, Martin Schueller, Perez Weigel and Matthias Bauer

The area behind the engine/wing junction of conventional civil aircraft configurations with underwing-mounted turbofans is susceptible to local flow separation at high angles of…

Abstract

Purpose

The area behind the engine/wing junction of conventional civil aircraft configurations with underwing-mounted turbofans is susceptible to local flow separation at high angles of attack, which potentially impacts maximum lift performance of the aircraft. This paper aims to present the design, testing and optimization of two distinct systems of fluidic actuation dedicated to reduce separation at the engine/wing junction.

Design/methodology/approach

Active flow control applied at the unprotected leading edge inboard of the engine pylon has shown considerable potential to alleviate or even eliminate local flow separation, and consequently regain maximum lift performance. Two actuator systems, pulsed jet actuators with and without net mass flux, are tested and optimized with respect to an upcoming large-scale wind tunnel test to assess the effect of active flow control on the flow behavior. The requirements and parameters of the flow control hardware are set by numerical simulations of project partners.

Findings

The results of ground test show that full modulation of the jets of the non-zero mass flux actuator is achieved. In addition, it could be shown that the required parameters can be satisfied at design mass flow, and that pressure levels are within bounds. Furthermore, a new generation of zero-net mass flux actuators with improved performance is presented and described. This flow control system includes the actuator devices, their integration, as well as the drive and control electronics system that is used to drive groups of actuators.

Originality/value

The originality is given by the application of the two flow control systems in a scheduled large-scale wind tunnel test.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 October 2021

Abderrahim Serrar, Mohamed El Khlifi and Azeddine Kourta

The purpose of this study is to compare two unsteady actuators: an oscillator and a sweeping jet. Both actuators can produce an oscillating jet of different amplitudes and…

Abstract

Purpose

The purpose of this study is to compare two unsteady actuators: an oscillator and a sweeping jet. Both actuators can produce an oscillating jet of different amplitudes and frequencies without any moving parts, making them an attractive actuator concept. The Coanda effect phenomenon can explain the operating principles of these two unsteady actuators.

Design/methodology/approach

A numerical study was conducted to compare the amplitudes and frequencies of fluidic and sweeping jet (SJ) oscillators to obtain an efficient actuator to control separated flows at high Reynolds numbers. For this goal, two-dimensional unsteady Reynolds-averaged Navier-Stokes simulations were carried out using computational fluid dynamics (CFD) fluent code to evaluate the actuator performances. The discrete fast Fourier transform method determined the oscillation frequencies.

Findings

The oscillation frequencies gradually increase as the inlet pressure increases. The characteristics and dimensions of the vortices produced in the mixing chamber and feedback loops vary overtime when the injected fluid is swept sideways. The frequencies supplied by the SJ are stronger than those obtained by the fluidic oscillator, which may contribute to improving the aerodynamic performance at a lower power supply cost.

Originality/value

The existence of the splitter in the fluidic oscillator led to the production of separate pulses, which would be useful in various industrial applications, including active control of combustion and mixing processes while other applications such as flow separation control require SJs. With the latter actuator higher and interesting frequencies can be obtained, leading to efficient flow control.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 October 2018

S. Manigandan and Vijayaraja K.

The purpose of this paper is to present the results of mixing promotion and screech frequency of controlled elliptical supersonic jet.

Abstract

Purpose

The purpose of this paper is to present the results of mixing promotion and screech frequency of controlled elliptical supersonic jet.

Design/methodology/approach

Flow field characteristics of low-aspect-ratio elliptical jets are examined at over-expanded, under-expanded and correctly expanded conditions. The tabs are placed at elliptical jet exit along the major and minor axes.

Findings

The results show that the mixing done by the minor axis is superior to the tabs along major axis. At all pressure ratios, the content of jet noise and the frequency are high for the tabs along the major axis because of increase in the amplitude of screech frequency. Further the tabs along minor axis show a dominance of large-scale vertical structures. In under-expanded conditions, the shock cell shows the rapid change because of the presence of tabs. The tabs along minor axis are making the shock weaker, hence no evidence of axis switching.

Practical implications

To achieve the greater performance of jet, the authors need to reduce the potential core length of the issuing jet. This can be achieved by implementing different types of tabs at the exit of the nozzle.

Originality/value

The present paper represents the flow of controlled jet using inverted triangular tabs. By achieving the controlled jet flow, the performance of propulsion systems can be improved. This can be used in systems such as combustion chamber, missile’s noise reduction and thrust vector control.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 June 2022

Anusindhiya Krishnaraj and Vinayagamurthy Ganesan

The purpose of this research is to study and investigate the flow control of 0.8 Mach jet using three tab configurations. The tabs with the slots will eventually lead to…

Abstract

Purpose

The purpose of this research is to study and investigate the flow control of 0.8 Mach jet using three tab configurations. The tabs with the slots will eventually lead to generation of vortices and thus enhances the mixing characteristics.

Design/methodology/approach

The jet flow control is achieved by the usage of three tabs, namely, Tab A, Tab B and Tab C that are placed at the exit plane of the convergent nozzle at 180 degrees apart. Three tabs with different slot profile are designed with the same constant blockage ratio of 7.3%. The tabs produce vortices of varying sizes that directly influence and modify the jet structure, thereby enhancing the efficiency in mass entrainment and mixing. The tabs are studied numerically first and then are compared with the results of the experiments.

Findings

The results are compared with that of the results of the uncontrolled jet. For Mach 0.8 jet, Tab C is found to reduce the core length and gives reduction of 90.23%, in comparison to Tab A and Tab B, which provides 84.1% and 87.79%, respectively. The results of numerical are then compared with the centerline results obtained via experiments. With the engagement of Tabs A, B and C, the jet structure is seen to have been modified at Mach 0.8 with Tab C performing better.

Practical implications

The tabs are a passive control device that can be practically enabled in the aircraft nozzles to control the flow and even suppress the noise emanated by the jet. Tabs can be effectively used for better thrust vector control and assist in jet noise suppression. Thus, this study on tabs and its uses are important and essential in aerospace technology.

Originality/value

This particular study on mechanical slotted tabs is innovatively carried out by designing the tabs in such a way that one such has not been designed before. The slots run through the adjacent sides of the tabs which is a novelty in itself, whereas perforations made only through the opposite sides of the tabs are studied by various researchers till now. The slots in the adjacent faces modify the flow physics in such a way that it enhances mixing by the creation of turbulence because of the interaction between the main stream and the secondary jet exactly at the core. So far, such slots and profiles are not investigated. By the usage of such tabs, the flow to mix faster is much closer to the core of the jet by creating mixed size vortices and thus has higher efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 October 2012

Nizam Dahalan, Shuhaimi Mansor, Muhammad Haniff Shaharudin and Airi Ali

The purpose of this paper is to evaluate the synthetic jet actuator design's performance based on piezoelectric diaphragms that can be appropriately used for flow separation…

Abstract

Purpose

The purpose of this paper is to evaluate the synthetic jet actuator design's performance based on piezoelectric diaphragms that can be appropriately used for flow separation control.

Design/methodology/approach

Design the synthetic jet actuators by means of estimating the several parameters and non‐dimensional parameters. Understanding the relationship and coupling effects of these parameters on the actuator to produce exit air jet required. Experiments were conducted to measure the exit air jet velocity using a hot‐wire anemometry and determine the good operational frequencies and voltages of the actuators for different cavity volume.

Findings

The performance of synthetic jet actuator is not consistent to a particular given frequency and it depends on design configurations. Each actuator will give a very good speed for a certain frequency. The results show that the exit air jet velocity increases would be better if the cavity volume is reduced and if the input voltage is increased to certain limits.

Research limitations/implications

The limit of input voltage for the actuators that can be achieved for good jet speed is 2V of about 205V output voltage for each frequency. The jet speed obtained is sufficient enough to control the separation for an aircraft which has a small wing chord and low speed. Therefore, more studies are needed to optimize the sizes of an orifice and cavity, and the selection of piezoelectric diaphragm.

Practical implications

The study helps in establishing a flow control device for controlling flow separation, especially on airfoils.

Originality/value

Design the synthetic jet actuators based on piezoelectric diaphragm for applications of flow separation control.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 10 March 2023

Hung Truong, Abderahmane Marouf, Alain Gehri, Jan Vos, Marianna Braza and Yannick Hoarau

This study aims to investigate the physical mechanisms of the use of active flow control (AFC) for a high-lift wing-flap configuration.

Abstract

Purpose

This study aims to investigate the physical mechanisms of the use of active flow control (AFC) for a high-lift wing-flap configuration.

Design/methodology/approach

By means of high-fidelity numerical simulations, the flow dynamics around a high-lift wing-flap system at high Reynolds number (Re/c = 4.6 million) is studied. Adapted turbulence models based on the URANS approach are used to capture the flow separation and the subsequent development of coherent structures. The present study focuses on the use of AFC using a synthetic jet known as zero-net-mass-flux (ZNMF) using the blowing–suction approach. Different parameters (geometry, frequency and velocity) of a ZNMF placed at the cambered flap’s chord are optimized to obtain the most efficient parameter settings to suppress the flow separation.

Findings

A synthetic jet with the optimal shape and orientation enforces the flow reattachment on the wing-flap surface. This leads to an improvement of the aerodynamic performance of the system. The wake thickness was reduced by 30%, and an increase of 17.6% in lift-to-drag ratio was obtained. Concerning the ZNMF location, they should be installed upstream of the separation point to achieve the best performance.

Originality/value

The effectiveness of ZNMF devices integrated on a high-lift wing-flap configuration was studied in real flight conditions at high Reynolds number. A detailed analysis of the wake dynamics explains how AFC forces the reattachment of the boundary layer and attenuates the predominant wake instabilities up to −20 dB.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 March 2008

A. Tuck and J. Soria

The aims of this study were to investigate the effect of using a wall‐normal, 2D micro zero‐net‐mass‐flux (ZNMF) jet located at the leading edge of a NACA 0015 airfoil to actively…

2082

Abstract

Purpose

The aims of this study were to investigate the effect of using a wall‐normal, 2D micro zero‐net‐mass‐flux (ZNMF) jet located at the leading edge of a NACA 0015 airfoil to actively control flow separation and enhance lift.

Design/methodology/approach

Experiments were conducted over a two‐dimensional airfoil in a water tunnel at a Reynolds number of 3.08 × 104 for the parametric investigation and the detailed multigrid cross‐correlation digital particle image velocimetry (MCCDPIV) measurements. Flow visualisation experiments were carried out at a lower Reynolds number of 1.54 × 104.

Findings

The largest lift increase was observed when a non‐dimensional frequency of 1.3 and an oscillatory momentum blowing coefficient of 0.14 per cent was employed. Under these forcing conditions the stall angle of the airfoil was mitigated from an angle of attack of 10o to one of 18o, resulting in a maximum lift coefficient increase of 46 per cent above the uncontrolled lift coefficient. Planar laser induced fluoroscopy and MCCDPIV revealed that the lift increments were the result of the generation of a train of large‐scale, spanwise lifting vortices that convected over the suction surface of the airfoil. The presence of these structures resulted in the flow seemingly remaining attached to the upper surface of the airfoil for a wider range of angles of attack.

Originality/value

This study is significant as it provides quantitative experimental data, which clearly demonstrates the effectiveness of a 2D micro ZNMF jet in controlling flow separation of a NACA 0015 airfoil at high angles of attack and thus, enhancing lift. Furthermore, the flow visualisations and MCCDPIV measurements have provided insight into the mechanisms responsible for the improvement in lift. This new understanding has applications beyond the NACA 0015 airfoil used in this study.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 24 February 2020

Yadav Krishna Kumar Rajnath, Akshoy Ranjan Paul and Anuj Jain

The purpose of air-intake duct used in combat aircrafts is to decelerate the inlet flow and concurrently raise the static pressure recovery at the compressor inlet. Because of…

Abstract

Purpose

The purpose of air-intake duct used in combat aircrafts is to decelerate the inlet flow and concurrently raise the static pressure recovery at the compressor inlet. Because of side-slip movement during sharp maneuvers of the aircrafts, the airflows ingested into twin air-intake ducts are not same and symmetric at its two inlets but are asymmetric in nature. The asymmetric inlet flow conditions at the twin air-intakes thus caused instabilities and deteriorated aerodynamic performance of aircraft components such as compressors and other downstream components. This study aims to investigate the flow control in a twin air-intake with asymmetric inflows.

Design/methodology/approach

The continuity and momentum equations are solved with second-order upwind scheme for computing finite-volume method-based unsteady computational fluid dynamics simulation.

Findings

Performance parameters are deteriorated with the increase of inflow asymmetry in the twin air-intake duct. Slotted synthetic jets are used to manage flow separation, thereby increasing aerodynamic performance of the air-intake. A variety of vortical structures are generated from the rectangular slots, convected downstream of the twin air-intake. The use of slotted synthetic jets increases static pressure recovery by 64 per cent whereas reducing total pressure loss coefficient by 63 per cent, distortion coefficient by 58 per cent and swirl coefficient by 55 per cent which is an indicative of better aerodynamic performance of twin air-intake.

Originality/value

The study stresses the need of robust flow control technique to improve the performance of combat air-intake system under extreme maneuvering conditions. The results can be useful in designing air-intake satisfying the stealth features for modern combat aircrafts.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 September 2017

Heribert Bieler

Aerodynamics drives the aircraft performance and, thus, influences fuel consumption and environmental compatibility. Further, optimization of aerodynamic shapes is an ongoing…

Abstract

Purpose

Aerodynamics drives the aircraft performance and, thus, influences fuel consumption and environmental compatibility. Further, optimization of aerodynamic shapes is an ongoing design activity in industrial offices; this will lead to incremental improvements. More significant step changes in performance are not expected from pure passive shape design. However, active flow control is a key technology, which has the potential to realize a drastic step change in performance. Flow control targets two major goals: low speed performance enhancements mainly for start and landing phase via control of separation and drag reduction at high speed conditions via skin friction and shock wave control.

Design/methodology/approach

This paper highlights flow control concepts and Airbus involvements for both items. To mature flow control systematically, local applications of separation control technology are of major importance for Airbus. In parallel, but at lower maturity level, investigations are ongoing to reduce the turbulent skin friction at cruise. A popular concept to delay separation at low speed conditions is the implementation of jet actuation control systems flush mounted to the wall of aerodynamic components.

Findings

In 2006, DLR (in collaboration with universities Berlin, Braunschweig and industrial partner Airbus) started to study active flow control for separation delay towards application. Based on basic proof of concepts (achieved in national projects), further flow control hardware developments and wind tunnel and lab testing took place in European funded projects.

Originality/value

Significant lift enhancements were realized via flow control applied to the wing leading edge and the flap.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 4000