Search results

1 – 10 of 103
Article
Publication date: 11 May 2020

Mengjie Hua, Shuo Yang, Quan Xu, Mo Chen, Huagan Wu and Bocheng Bao

The purpose of this paper is to develop two types of simple jerk circuits and to carry out their dynamical analyses using a unified mathematical model.

Abstract

Purpose

The purpose of this paper is to develop two types of simple jerk circuits and to carry out their dynamical analyses using a unified mathematical model.

Design/methodology/approach

Two types of simple jerk circuits only involve a nonlinear resistive feedback channel composited by a nonlinear device and an inverter. The nonlinear device is implemented through parallelly connecting two diode-switch-based series branches. According to the classifications of switch states and circuit types, a unified mathematical model is established for these two types of simple jerk circuits, and the origin symmetry and scale proportionality along with the origin equilibrium stability are thereby discussed. The coexisting bifurcation behaviors in the two types of simple jerk systems are revealed by bifurcation plots, and the origin symmetry and scale proportionality are effectively demonstrated by phase plots and attraction basins. Moreover, hardware experimental measurements are performed, from which the captured results well validate the numerical simulations.

Findings

Two types of simple jerk circuits are unified through parallelly connecting two diode-switch-based series branches and a unified mathematical model with six kinds of nonlinearities is established. Especially, the origin symmetry and scale proportionality for the two types of simple jerk systems are discussed quantitatively. These jerk circuits are all simple and inexpensive, easy to be physically implemented, which are helpful to explore chaos-based engineering applications.

Originality/value

Unlike previous works, the significant values are that through unifying these two types of simple jerk systems, a unified mathematical model with six kinds of nonlinearities is established, upon which symmetrically scaled coexisting behaviors are numerically disclosed and experimentally demonstrated.

Details

Circuit World, vol. 47 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 4 October 2018

Bocheng Bao, Jiaoyan Luo, Han Bao, Quan Xu, Yihua Hu and Mo Chen

The purpose of this paper is to construct a proportion-integral-type (PI-type) memristor, which is different from that of the previous memristor emulator, but the constructing…

Abstract

Purpose

The purpose of this paper is to construct a proportion-integral-type (PI-type) memristor, which is different from that of the previous memristor emulator, but the constructing memristive chaotic circuit possesses line equilibrium, leading to the emergence of the initial conditions-related dynamical behaviors.

Design/methodology/approach

This paper presents a PI-type memristor emulator-based canonical Chua’s chaotic circuit. With the established mathematical model, the stability region for the line equilibrium is derived, which mainly consists of stable and unstable regions, leading to the emergence of bi-stability because of the appearance of a memristor. Initial conditions-related dynamical behaviors are investigated by some numerically simulated methods, such as phase plane orbit, bifurcation diagram, Lyapunov exponent spectrum, basin of the attraction and 0-1 test. Additionally, PSIM circuit simulations are executed and the seized results validate complex dynamical behaviors in the proposed memristive circuit.

Findings

The system exhibits the bi-stability phenomenon and demonstrates complex initial conditions-related bifurcation behaviors with the variation of system parameters, which leads to the occurrence of the hyperchaos, chaos, quasi-periodic and period behaviors in the proposed circuit.

Originality/value

These memristor emulators are simple and easy to physically fabricate, which have been increasingly used for experimentally demonstrating some interesting and striking dynamical behaviors in the memristor-based circuits and systems.

Details

Circuit World, vol. 44 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 May 2019

Li Xiong, Wanjun Yin and Xinguo Zhang

This paper is aimed at investigating a novel chemical oscillating chaotic system with different attractors at fixed parameters. The typical dynamical behavior of the new chemical…

Abstract

Purpose

This paper is aimed at investigating a novel chemical oscillating chaotic system with different attractors at fixed parameters. The typical dynamical behavior of the new chemical oscillating system is discussed, and it is found that the state selection is dependent on initial values. Then, the stabilization problem of the chemical oscillating attractors is investigated analytically and numerically. Subsequently, the novel electronic circuit of the proposed chemical oscillating chaotic system are constructed, and the influences of the changes of circuit parameters on chemical oscillating chaotic attractors are investigated.

Design/methodology/approach

The different attractors of the novel chemical oscillating chaotic system are investigated by changing the initial values under fixed parameters. Moreover, the active control and adaptive control methods are presented to make the chemical oscillating chaotic systems asymptotically stable at the origin based on the Lyapunov stability theory. The influences on chemical oscillating chaotic attractors are also verified by changing the circuit parameters.

Findings

It is found that the active control method is easier to be realized by using physical components because of its less control signal and lower cost. It is also confirmed that the adaptive control method enjoys strong anti-interference ability because of its large number of selected controllers. What can be seen from the simulation results is that the chaotic circuits are extremely dependent on circuit parameters selection. Comparisons between MATLAB simulations and Multisim simulation results show that they are consistent with each other and demonstrate that changing attractors of the chemical oscillating chaotic system exist. It is conformed that circuit parameters selection can be effective to control and realize chaotic circuits.

Originality/value

The different attractors of the novel chemical oscillating chaotic system are investigated by changing the initial values under fixed parameters. The characteristic of the chemical oscillating attractor is that the basin of attraction of the three-dimensional attractor is located in the first quadrant of the eight quadrants of the three-dimensional space, and the ranges of the three variables are positive. This is because the concentrations of the three chemical substances are all positive.

Details

Circuit World, vol. 45 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 23 April 2018

Quan Xu, Qinling Zhang, Tao Jiang, Bocheng Bao and Mo Chen

The purpose of this paper is to develop a simple chaotic circuit. The circuit can be fabricated by less discrete electronic components, within which complex dynamical behaviors…

Abstract

Purpose

The purpose of this paper is to develop a simple chaotic circuit. The circuit can be fabricated by less discrete electronic components, within which complex dynamical behaviors can be generated.

Design/methodology/approach

A second-order non-autonomous inductor-free chaotic circuit is presented, which is obtained by introducing a sinusoidal voltage stimulus into the classical Wien-bridge oscillator. The proposed circuit only has two dynamic elements, and its nonlinearity is realized by the saturation characteristic of the operational amplifier in the classical Wien-bridge oscillator. After that, its dynamical behaviors are revealed by means of bifurcation diagram, Lyapunov exponent and phase portrait and further confirmed using the 0-1 test method. Moreover, an analog circuit using less discrete electronic components is implemented, and its experimental results are measured to verify the numerical simulations.

Findings

The equilibrium point located in a line segment varies with time evolution, which leads to the occurrence of periodic, quasi-periodic and chaotic behaviors in the proposed circuit.

Originality/value

Unlike the previously published works, the significant values of the proposed circuit with simple topology are inductor-free realization and without extra nonlinearity, which make the circuit can be used as a paradigm for academic teaching and experimental illustraction for chaos.

Details

Circuit World, vol. 44 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 August 2017

Li Xiong, Zhenlai Liu and Xinguo Zhang

Lack of optimization and improvement on experimental circuits precludes comprehensive statements. It is a deficiency of the existing chaotic circuit technology. One of the aims of…

Abstract

Purpose

Lack of optimization and improvement on experimental circuits precludes comprehensive statements. It is a deficiency of the existing chaotic circuit technology. One of the aims of this paper is to solve the above mentioned problems. Another purpose of this paper is to construct a 10 + 4-type chaotic secure communication circuit based on the proposed third-order 4 + 2-type circuit which can output chaotic phase portraits with high accuracy and high stability.

Design/methodology/approach

In Section 2 of this paper, a novel third-order 4 + 2 chaotic circuit is constructed and a new third-order Lorenz-like chaotic system is proposed based on the 4 + 2 circuit. Then some simulations are presented to verify that the proposed system is chaotic by using Multisim software. In Section 3, a fourth-order chaotic circuit is proposed on the basis of the third-order 4 + 2 chaotic circuit. In Section 4, the circuit design method of this paper is applied to chaotic synchronization and secure communication. A new 10 + 4-type chaotic secure communication circuit is proposed based on the novel third-order 4 + 2 circuit. In Section 5, the proposed third-order 4 + 2 chaotic circuit and the fourth-order chaotic circuit are implemented in an analog electronic circuit. The analog circuit implementation results match the Multisim results.

Findings

The simulation results show that the proposed fourth-order chaotic circuit can output six phase portraits, and it can output a stable fourth-order double-vortex chaotic signal. A new 10 + 4-type chaotic secure communication circuit is proposed based on the novel third-order 4 + 2 circuit. The scheme has the advantages of clear thinking, efficient and high practicability. The experimental results show that the precision is improved by 2-3 orders of magnitude. Signal-to-noise ratio meets the requirements of engineering design. It provides certain theoretical and technical bases for the realization of a large-scale integrated circuit with a memristor. The proposed circuit design method can also be used in other chaotic systems.

Originality/value

In this paper, a novel third-order 4 + 2 chaotic circuit is constructed and a new chaotic system is proposed on the basis of the 4 + 2 chaotic circuit for the first time. Some simulations are presented to verify its chaotic characteristics by Multisim. Then the novel third-order 4 + 2 chaotic circuit is applied to construct a fourth-order chaotic circuit. Simulation results verify the existence of the new fourth-order chaotic system. Moreover, a new 10 + 4-type chaotic secure communication circuit is proposed based on chaotic synchronization of the novel third-order 4 + 2 circuit. To illustrate the effectiveness of the proposed scheme, the intensity limit and stability of the transmitted signal, the characteristic of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. Finally, the proposed third-order 4 + 2 chaotic circuit and the fourth-order chaotic circuit are implemented through an analog electronic circuit, which are characterized by their high accuracy and good robustness. The analog circuit implementation results match the Multisim results.

Article
Publication date: 4 July 2018

Yanjun Lu, Li Xiong, Yongfang Zhang, Peijin Zhang, Cheng Liu, Sha Li and Jianxiong Kang

This paper aims to introduce a novel four-dimensional hyper-chaotic system with different hyper-chaotic attractors as certain parameters vary. The typical dynamical behaviors of…

Abstract

Purpose

This paper aims to introduce a novel four-dimensional hyper-chaotic system with different hyper-chaotic attractors as certain parameters vary. The typical dynamical behaviors of the new hyper-chaotic system are discussed in detail. The control problem of these hyper-chaotic attractors is also investigated analytically and numerically. Then, two novel electronic circuits of the proposed hyper-chaotic system with different parameters are presented and realized using physical components.

Design/methodology/approach

The adaptive control method is derived to achieve chaotic synchronization and anti-synchronization of the novel hyper-chaotic system with unknown parameters by making the synchronization and anti-synchronization error systems asymptotically stable at the origin based on Lyapunov stability theory. Then, two novel electronic circuits of the proposed hyper-chaotic system with different parameters are presented and realized using physical components. Multisim simulations and electronic circuit experiments are consistent with MATLAB simulation results and they verify the existence of these hyper-chaotic attractors.

Findings

Comparisons among MATLAB simulations, Multisim simulation results and physical experimental results show that they are consistent with each other and demonstrate that changing attractors of the hyper-chaotic system exist.

Originality/value

The goal of this paper is to construct a new four-dimensional hyper-chaotic system with different attractors as certain parameters vary. The adaptive synchronization and anti-synchronization laws of the novel hyper-chaotic system are established based on Lyapunov stability theory. The corresponding electronic circuits for the novel hyper-chaotic system with different attractors are also implemented to illustrate the accuracy and efficiency of chaotic circuit design.

Details

Circuit World, vol. 44 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 April 2022

Hongwei Yang, Yingying Wang, Meng Zhang and Lianchun Long

This paper aims to provide a symplectic conservation numerical analysis method for the study of nonlinear LC circuit.

Abstract

Purpose

This paper aims to provide a symplectic conservation numerical analysis method for the study of nonlinear LC circuit.

Design/methodology/approach

The flux linkage control type nonlinear inductance model is adopted, and the LC circuit can be converted into the Hamiltonian system by introducing the electric charge as the state variable of the flux linkage. The nonlinear Hamiltonian matrix equation can be solved by perturbation method, which can be written as the sum of linear and nonlinear terms. Firstly, the linear part can be solved exactly. On this basis, the nonlinear part is analyzed by the canonical transformation. Then, the coefficient matrix of the obtained equation is still a Hamiltonian matrix, so symplectic conservation is achieved.

Findings

Numerical results reveal that the method proposed has strong stability, high precision and efficiency, and it has great advantages in long-term simulations.

Originality/value

This method provides a novel and effective way in studying the nonlinear LC circuit.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 May 2014

Alborz Mirzabeigy and Ahmet Yildirim

The nonlinear jerk equation is a third-order nonlinear equation that describes some physical phenomena and in general form is given by: x = J (x, x, x). The purpose of this paper…

Abstract

Purpose

The nonlinear jerk equation is a third-order nonlinear equation that describes some physical phenomena and in general form is given by: x = J (x, x, x). The purpose of this paper is to employ the modified (MDTM) differential transform method (DTM) to obtain approximate periodic solutions of two cases of nonlinear jerk equation.

Design/methodology/approach

The approach is based on MDTM that is developed by combining DTM, Laplace transform and Padé approximant.

Findings

Comparison of results obtained by MDTM with those obtained by numerical solutions indicates the excellent accuracy of solution.

Originality/value

The MDTM is extended to determining approximate periodic solution of third-order nonlinear differential equations.

Details

Engineering Computations, vol. 31 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 January 2022

E. S. Aly, M. M. El-Dessoky, M. T. Yassen, E. Saleh, M. A. Aiyashi and Ahmed Hussein Msmali

The purpose of the study is to obtain explicit formulas to determine the stability of periodic solutions to the new system and study the extent of the stability of those periodic…

98

Abstract

Purpose

The purpose of the study is to obtain explicit formulas to determine the stability of periodic solutions to the new system and study the extent of the stability of those periodic solutions and the direction of bifurcated periodic solutions. More than that, the authors did a numerical simulation to confirm the results that the authors obtained and presented through numerical analysis are the periodic and stable solutions and when the system returns again to the state of out of control.

Design/methodology/approach

The authors studied local bifurcation and verified its occurrence after choosing the delay as a parameter of control in Zhou 2019’s dynamical system with delayed feedback control. The authors investigated the normal form theory and the center manifold theorem.

Findings

The occurrence of local Hopf bifurcations at the Zhou's system is verified. By using the normal form theory and the center manifold theorem, the authors obtain the explicit formulas for determining the stability and direction of bifurcated periodic solutions. The theoretical results obtained and the corresponding numerical simulations showed that the chaos phenomenon in the Zhou's system can be controlled using a method of time-delay auto-synchronization.

Originality/value

As the delay increases further, the numerical simulations show that the periodic solution disappears, and the chaos attractor appears again. The obtained results can also be applied to the control and anti-control of chaos phenomena of system (1). There are still abundant and complex dynamical behaviors, and the topological structure of the new system should be completely and thoroughly investigated and exploited.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 October 2019

Lei Zhu, Minghai Pan and Xiaohua Qiao

This paper aims to classify the inductorless Chua’s circuits into two types from the topological structures and construct a chaotic circuit under this new classification framework.

Abstract

Purpose

This paper aims to classify the inductorless Chua’s circuits into two types from the topological structures and construct a chaotic circuit under this new classification framework.

Design/methodology/approach

In this paper, two types of inductorless Chua’s circuit models are presented from topological structure, among which the first type of inductorless Chua’s circuit (FTICC) model is much closer to the original Chua’s circuit. Under this classification framework, a new inductorless Chua’s circuit that belongs to the FTICC model is built by replacing LC parallel resonance of the original Chua’s circuit with a second order Sallen–Key band pass filter.

Findings

Compared with a paradigm of a reported inductorless Chua’s circuit that belongs to the second type of inductorless Chua’s circuit (STICC) model, the newly proposed circuit can present the attractors which are much more closely to the original Chua’s attractors. The dynamical behaviors of coexisting period-doubling bifurcation patterns and boundary crisis are discovered in the newly proposed circuit from both numerical simulations and experimental measurements. Moreover, a crisis scenario is observed that unmixed pairs of symmetric coexisting limit cycles with period-3 traverse through the entire parameter interval between coexisting single-scroll chaotic attractors and double-scroll chaotic attractor.

Originality/value

The newly constructed circuit enriches the family of inductorless Chua’s circuits, and its simple topology with small printed circuit board size facilitates the various types of engineering applications based on chaos.

1 – 10 of 103