Search results

1 – 10 of 27
Article
Publication date: 10 April 2017

Mica Grujicic, S. Ramaswami and Jennifer Snipes

In the recent work, a new blast-wave impact-mitigation concept involving the use of a protective structure consisting of bimolecular reactants (polyvinyl pyridine+cyclohexyl…

Abstract

Purpose

In the recent work, a new blast-wave impact-mitigation concept involving the use of a protective structure consisting of bimolecular reactants (polyvinyl pyridine+cyclohexyl chloride), capable of undergoing a chemical reaction (to form polyvinyl pyridinium ionic salt) under shockwave loading conditions, was investigated using all-atom reactive equilibrium and non-equilibrium molecular-dynamics analyses. The purpose of this paper is to reveal the beneficial shockwave dispersion/attenuation effects offered by the chemical reaction, direct simulations of a fully supported single planar shockwave propagating through the reactive mixture were carried out, and the structure of the shock front examined as a function of the extent of the chemical reaction (i.e. as a function of the strength of the incident shockwave). The results obtained clearly revealed that chemical reactions give rise to considerable broadening of the shockwave front. In the present work, the effect of chemical reactions and the structure of the shockwaves are investigated at the continuum level.

Design/methodology/approach

Specifically, the problem of the (conserved) linear-momentum accompanying the interaction of an incident shockwave with the protective-structure/protected-structure material interface has been investigated, within the steady-wave/structured-shock computational framework, in order to demonstrate and quantify an increase in the time period over which the momentum is transferred and a reduction in the peak loading experienced by the protected structure, both brought about by the occurrence of the chemical reaction (within the protective structure).

Findings

The results obtained clearly revealed the beneficial shock-mitigation effects offered by a protective structure capable of undergoing a chemical reaction under shock-loading conditions.

Originality/value

To the authors’ knowledge, the present manuscript is the first report dealing with a continuum-level analysis of the blast-mitigation potential of chemical reactions.

Details

International Journal of Structural Integrity, vol. 8 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 October 2016

Mica Grujicic, Jennifer Snipes and S. Ramaswami

The purpose of this paper is to introduce and analyze a new blast-wave impact-mitigation concept using advanced computational methods and tools. The concept involves the use of a…

Abstract

Purpose

The purpose of this paper is to introduce and analyze a new blast-wave impact-mitigation concept using advanced computational methods and tools. The concept involves the use of a protective structure consisting of bimolecular reactants displaying a number of critical characteristics, including: a high level of thermodynamic stability under ambient conditions (to ensure a long shelf-life of the protective structure); the capability to undergo fast/large-yield chemical reactions under blast-impact induced shock-loading conditions; large negative activation and reaction volumes to provide effective attenuation of the pressure-dominated shockwave stress field through the volumetric-energy storing effects; and a large activation energy for efficient energy dissipation. The case of a particular bimolecular chemical reaction involving polyvinyl pyridine and cyclohexyl chloride as reactants and polyvinyl pyridinium ionic salt as the reaction product is analyzed.

Design/methodology/approach

Direct simulations of single planar shockwave propagations through the reactive mixture are carried out, and the structure of the shock front examined, as a function of the occurrence of the chemical reaction. To properly capture the shockwave-induced initiation of the chemical reactions during an impact event, all the calculations carried out in the present work involved the use of all-atom molecular-level equilibrium and non-equilibrium reactive molecular-dynamics simulations. In other words, atomic bonding is not pre-assigned, but is rather determined dynamically and adaptively using the concepts of the bond order and atomic valence.

Findings

The results obtained clearly reveal that when the chemical reactions are allowed to take place at the shock front and in the shockwave, the resulting shock front undergoes a considerable level of dispersion. Consequently, the (conserved) linear momentum is transferred (during the interaction of the protective-structure borne shockwaves with the protected structure) to the protected structure over a longer time period, while the peak loading experienced by the protected structure is substantially reduced.

Originality/value

To the authors’ knowledge, the present work is the first attempt to simulate shock-induced chemical reactions at the molecular level, for purposes of blast-mitigation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 April 2017

Mica Grujicic, Jennifer Snipes and S. Ramaswami

In order to help explain experimental findings related to the stabbing- and ballistic-penetration resistance of flexible body-armor, single-yarn pull-out tests, involving…

Abstract

Purpose

In order to help explain experimental findings related to the stabbing- and ballistic-penetration resistance of flexible body-armor, single-yarn pull-out tests, involving specially prepared fabric-type test coupons, are often carried out. The purpose of this paper is to develop a finite-element-based computational framework for the simulation of the single-yarn pull-out test, and applied to the case of Kevlar® KM2 fabric.

Design/methodology/approach

Three conditions of the fabric are considered: neat, i.e, as-woven; polyethylene glycol (PEG)-infiltrated; and shear-thickening fluid (STF)-infiltrated. Due to differences in the three conditions of the fabric, the computational framework had to utilize three different finite-element formulations: standard Lagrangian formulation for the neat fabric; combined Eulerian-Lagrangian formulation for the PEG-infiltrated fabric (an Eulerian subdomain had to be used to treat the PEG solvent/dispersant); and combined continuum Lagrangian/discrete-particle formulation for the STF-infiltrated fabric (to account for the interactions of the particles suspended in PEG, which give rise to the STF character of the suspension, with the yarns, the particles had to be treated explicitly).

Findings

The results obtained for the single-yarn pull-out virtual tests are compared with the authors’ experimental counterparts, and a reasonably good agreement is obtained, for all three conditions of the fabric.

Originality/value

To the authors’ knowledge, the present work represents the first attempt to simulate single-yarn pull-out tests of Kevlar® KM2 fabric.

Details

International Journal of Structural Integrity, vol. 8 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 June 2017

Mica Grujicic, Jennifer Snipes and S. Ramaswami

The purpose of this paper is to model a nacre-like composite material, consisting of tablets and polyurea tablet/tablet interfaces, B4C. This composite material is being…

Abstract

Purpose

The purpose of this paper is to model a nacre-like composite material, consisting of tablets and polyurea tablet/tablet interfaces, B4C. This composite material is being considered in the construction of the so-called backing-plate, a layer within a multi-functional/multi-layer armor system.

Design/methodology/approach

Considering the basic functions of the backing-plate (i.e. to provide structural support for the ceramic-strike-face and to stop a high-velocity projectile and the accompanying fragments) in such an armor system, the composite-material architecture is optimized with respect to simultaneously achieving high flexural stiffness and high ballistic-penetration resistance. Flexural stiffness and penetration resistance, for a given architecture of the nacre-like composite material, are assessed using a series of transient non-linear dynamics finite-element analyses. The suitability of the optimized composite material for use in backing-plate applications is then evaluated by comparing its performance against that of the rolled homogeneous armor (RHA), a common choice for the backing-plate material.

Findings

The results obtained established: a trade-off between the requirements for a high flexural stiffness and a high ballistic-penetration resistance in the nacre-like composite material; and overall superiority of the subject composite material over the RHA when used in the construction of the backing-plate within multi-functional/multi-layer armor systems.

Originality/value

This study extends the authors previous research on nacre-mimetic armor to optimize the architecture of the armor with respect to its flexural stiffness and ballistic-penetration resistance, so that these properties could be increased over the levels attained in the current choice (RHA) for the backing layer of multi-functional/multi-layer armor.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 April 2017

Mica Grujicic, Brian d’Entremont, Jennifer Snipes and S. Ramaswami

A new concept solution for improving blast survivability of the light tactical military vehicles is proposed and critically assessed using computational engineering methods and…

Abstract

Purpose

A new concept solution for improving blast survivability of the light tactical military vehicles is proposed and critically assessed using computational engineering methods and tools.

Design/methodology/approach

The solution is inspired by the principle of operation of the rocket-engine nozzles, in general and the so called “pulse detonation” rocket engines, in particular, and is an extension of the recently introduced so-called “blast chimney” concept (essentially a vertical channel connecting the bottom and the roof and passing through the cabin of a light tactical vehicle). Relative to the blast-chimney concept, the new solution offers benefits since it does not compromise the cabin space or the ability of the vehicle occupants to scout the environment and, is not expected to, degrade the vehicle’s structural durability/reliability. The proposed concept utilizes side vent channels attached to the V-shaped vehicle underbody whose geometry is optimized with respect to the attainment of the maximum downward thrust on the vehicle. In the course of the channel design optimization, analytical and computational analyses of supersonic flow (analogous to the one often used in the case of the pulse detonation engine) are employed.

Findings

The preliminary results obtained reveal the beneficial effects of the side channels in reducing the blast momentum, although the extent of these effects is quite small (2-4 per cent).

Originality/value

To the authors’ knowledge, the present work is the first exploration of the side-vent-channels concept for mitigating the effect of buried-mine explosion on a light tactical vehicle.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2017

Mica Grujicic, Ramin Yavari, S. Ramaswami and Jennifer Snipes

The purpose of this paper is to carry out a design-optimization analysis of the recently proposed side-vent-channel concept/solution for mitigation of the blast loads resulting…

Abstract

Purpose

The purpose of this paper is to carry out a design-optimization analysis of the recently proposed side-vent-channel concept/solution for mitigation of the blast loads resulting from a shallow-buried mine detonated underneath a light tactical vehicle. Within this concept/solution, side-vent-channels attached to the V-shaped vehicle underbody are used to promote venting of ejected soil and supersonically expanding gaseous detonation products. This effect generates a downward thrust on the targeted vehicle, helping the vehicle survive mine-detonation-induced impulse loading.

Design/methodology/approach

The utility and the blast-mitigation capacity of this concept are investigated computationally using coupled finite-element/discrete-particle computational methods and tools. To maximize the blast-mitigation capacity of the solution (as defined by a tradeoff between the maximum reductions in the detonation-induced total momentum transferred to, and the acceleration acquired by, the target vehicle), the geometry and size of the side-vent-channel solution are optimized.

Findings

It is found that by optimizing the shape and size of the side-vent-channels, their ability to mitigate blast can be improved, but the overall blast-mitigation potential of the side-vent-channel solution remains relatively modest.

Originality/value

To the authors’ knowledge, the present work is the first attempt to combine the finite-element/discrete-particle analysis with optimization in order to refine the side-vent-channel blast-mitigation concept.

Details

International Journal of Structural Integrity, vol. 8 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 February 2017

Mica Grujicic, S. Ramaswami and Jennifer Snipes

Nacre is a biological material constituting the innermost layer of the shells of gastropods and bivalves. It consists of polygonal tablets of aragonite, tessellated to form…

Abstract

Purpose

Nacre is a biological material constituting the innermost layer of the shells of gastropods and bivalves. It consists of polygonal tablets of aragonite, tessellated to form individual layers and having the adjacent layers as well as the tablets within a layer bonded by a biopolymer. Due to its highly complex hierarchical microstructure, nacre possesses an outstanding combination of mechanical properties, the properties which are far superior to the ones that are predicted using techniques such as the rule of mixtures. Given these properties, a composite armor the structure of which mimics that of nacre may have improved performance over a monolithic armor having a similar composition and an identical areal density. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, an attempt is made to model a nacre-like composite armor consisting of B4C tablets and polyurea tablet/tablet interfaces. The armor is next tested with respect to impact by a solid right circular cylindrical (SRCC) rigid projectile, using a transient non-linear dynamics finite-element analysis. The ballistic-impact response and the penetration resistance of the armor are then compared with that of the B4C monolithic armor having an identical areal density. Furthermore, the effect of various nacre microstructural features (e.g. surface profiling, micron-scale asperities, mineral bridges between the overlapping tablets lying in adjacent layers, and B4C nano-crystallinity) on the ballistic-penetration resistance of the composite armor is investigated in order to identify an optimal nacre-like composite armor architecture having the largest penetration resistance.

Findings

The results obtained clearly show that a nacre-like armor possesses a superior penetration resistance relative to its monolithic counterpart, and that the nacre microstructural features considered play a critical role in the armor-penetration resistance.

Originality/value

The present work indicates that for a given choice of armor material, penetration resistance may be improved by choosing a structure resembling that of nacre.

Details

International Journal of Structural Integrity, vol. 8 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 March 2016

Mica Grujicic, Jennifer Snipes, S. Ramaswami, Vasudeva Avuthu, Chian-Fong Yen and Bryan Cheeseman

To overcome the problem of inferior through-the-thickness mechanical properties displayed by armor-grade composites based on 2-D reinforcement architectures, armor-grade…

Abstract

Purpose

To overcome the problem of inferior through-the-thickness mechanical properties displayed by armor-grade composites based on 2-D reinforcement architectures, armor-grade composites based on 3D fiber-reinforcement architectures have recently been investigated experimentally.

Design/methodology/approach

The subject of the present work is armor-grade composite materials reinforced using ultra-high-molecular-weight polyethylene fibers and having four (two 2D and two 3D) prototypical architectures, as well as the derivation of the corresponding material models. The effect of the reinforcement architecture is accounted for by constructing the appropriate unit cells (within which the constituent materials and their morphologies are represented explicitly) and subjecting them to a series of virtual mechanical tests. The results obtained are used within a post-processing analysis to derive and parameterize the corresponding homogenized-material models. One of these models (specifically, the one for 0°/90° cross-collimated fiber architecture) was directly validated by comparing its predictions with the experimental counterparts. The other models are validated by examining their physical soundness and details of their predictions. Lastly, the models are integrated as user-material subroutines, and linked with a commercial finite-element package, in order to carry out a transient non-linear dynamics analysis of ballistic transverse impact of armor-grade composite-material panels with different reinforcement architectures.

Findings

It is found that the reinforcement architecture plays a critical role in the overall ballistic limit of the armor panel, as well as in its structural and damage/failure response.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to assess, computationally, the utility and effectiveness of 3D fiber-reinforcement architectures for ballistic impact applications.

Details

Engineering Computations, vol. 33 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 13 June 2016

Mica Grujicic, Jennifer Snipes and S Ramaswami

The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the…

Abstract

Purpose

The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the mechanical performance of the resulting FS joints.

Design/methodology/approach

Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the FS process; (b) determination of the mechanical properties of the resulting FS joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the FS joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified FS connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all FS joints is associated with a prohibitive computational cost.

Findings

Virtual testing of the shell components fastened using the joint connectors validated the ability of these line elements to realistically account for the strength, ductility and toughness of the three-dimensional FS joints.

Originality/value

The approach developed in the present work can be used, within an engineering-optimization procedure, to adjust the FS process and material parameters (design variables) in order to obtain a desired combination of the FS-joint mechanical properties (objective function).

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 August 2015

Mica Grujicic, Jennifer Snipes, Ramin Yavari, S. Ramaswami and Rohan Galgalikar

The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC…

Abstract

Purpose

The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC) components used in gas-turbine engines are commonly protected with so-called environmental barrier coatings (EBCs). EBCs typically consist of three layers: a top thermal and mechanical protection coat; an intermediate layer which provides environmental protection; and a bond coat which assures good EBC/CMC adhesion. The materials used in different layers and their thicknesses are selected in such a way that the coating performance is optimized for the gas-turbine component in question.

Design/methodology/approach

Gas-turbine engines, while in service, often tend to ingest various foreign objects of different sizes. Such objects, entrained within the gas flow, can be accelerated to velocities as high as 600 m/s and, on impact, cause substantial damage to the EBC and SiC/SiC CMC substrate, compromising the component integrity and service life. The problem of foreign object damage (FOD) is addressed in the present work computationally using a series of transient non-linear dynamics finite-element analyses. Before such analyses could be conducted, a major effort had to be invested toward developing, parameterizing and validating the constitutive models for all attendant materials.

Findings

The computed FOD results are compared with their experimental counterparts in order to validate the numerical methodology employed.

Originality/value

To the authors’ knowledge, the present work is the first reported study dealing with the computational analysis of the FOD sustained by CMCs protected with EBCs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 27